

ALICE The O² project

The context

The ALICE upgrade

3

(c) by St. Rossegger

objectives

• RUN 1

YEAR	SYSTEM	√s _{NN} (TeV)	
2010	Pb-Pb	2.76	0.01 nb ⁻¹
2011	Pb-Pb	2.76	0 .1 nb ⁻¹
2013	p-Pb	5.02	30 nb⁻¹

• RUN 2 (2015-2018):

1 nb⁻¹ at double $\sqrt{s_{NN}}$ and with improved detectors

• RUN 3&4 (2019-2020):

10 nb⁻¹ with upgraded ALICE

when

Requirements

- Interaction rate: 50 kHz Pb-Pb minimum bias (× 100)
- Events statistics: ~ 2-3 × 10¹⁰ Pb(p)-Pb and pp events/ year during 6 years
- Event size: ~ 22 MB/event
- Max RO rate: 50 kHz (TPC) \rightarrow 100 kHz (ITS)
- Max Data rate: ~ 3.3 TB/s

O²: a paradigm shift

- Read out data for all interactions: 50 kHz
- Online data compression:
 space points → tracks
- Distribute data to the Grid
- AF: dedicated sites for efficient analysis + AOD storage

Unmodified raw data from detectors to online farm in trigger less mode

3.3 TB/s

Baseline correction & Z suppression No event discarded

0.5 TB/s

Reduction by online tracking Only reco data to storage

0.09 TB/s

Storage: 1 year of data - BW: 90 GB/s (W&R)

- 60 PB

- AF

Asynchronous *O*(hours) event reco with final calib

O²: a paradigm shift

https://cds.cern.ch/record/2011297/files/ALICE-TDR-019.pdf

- Read out data for all interactions: 50 kHz
- Online data compression: space points → tracks
- Distribute data to the Grid
- AF: dedicated sites for efficient analysis + AOD storage

8

Data flow & processing

 Processing synchronous with data taking

90 GB/s

 $0^{2}/T0/T1$

Storage

 $0^{2}/T0/T1$

Archive

 Processing asynchronous O(hours) with data taking

Data flow & processing

10

A Large Ion Collider Experiment

Data flow & processing (2)

13

A Large Ion Collider Experiment

O² facility

- Computing capacity to be used for online/offline tasks
- 463 FPGA (cluster finder)
- 100'000 CPU cores (÷14 data flow)
- 3'000 GPU (speed up reconstruction)
- 60 PB disk (buffer for further processing)

- Collect AODs on a few dedicated sites that are capable of locally processing quickly large data volume
- AF needs to be able to digest more than 5 PB of AODs in a 12 hours period
 - $\mathcal{O}(20-30k)$ cores + $\mathcal{O}(10)$ PB of disk
 - Cluster file system to serve 20k job slots at an aggregate throughput of 200 GB/s

Simulation Facility

Software architecture

Documented in chapters 7 and 8 of the

TDR

- Message-based multi-processing
 - Ease of development
 - Ease to scale horizontally
 - Possibility to extend with different hardware
 - Multi-threading within processes possible
- ALFA
 - Developed in common by experiments at FAIR and ALICE
 - Based on message transport packages
 - Data transport
 - Dynamic Deployment System

Panda		Cbm	ALICE O2							
	FairRoot									
	ALFA									
	Libraries and tools									

ALFA

- Large monolithic programs are divided in tasks
- Each task can
 - Run on multiple or different hardware (CPU or hw accelerator)
 - Be written in any of the supported language
 - Be multi-threaded if need be

Questions

- Q1: O² task distributions and organization ?
 - The general project organization is described in the TDR Chapter 11.The task distribution is currently done by the O² Steering Board constituted by the project leaders of the DAQ, HLT and Offline project or their representative.

- Institution Board: Discusses and decides about managerial, financial, organizational issues
- Steering Board (PL of DAQ, HLT, Offline): managerial, financial, technical & organizational issues
- 7 Computing Working Groups: R&D work

Group	Topic	Group	Topic
CWG 1	Architecture	CWG 8	Physics Simulation
CWG 2	Tools & Procedures	CWG 9	Quality Control, Visualization
CWG 3	Data flow	CWG 10	Control, Configuration, Monitoring
CWG 4	Data Model	CWG 11	Software Lifecycle
CWG 5	Computing Platforms	CWG 12	Hardware
CWG 6	Calibration	CWG 13	Software framework
CWG 7	Reconstruction		

Table 11.1: O² Project Computing Working Groups and their topics.

21

- Q2: Which parts/ tasks are missing most or lack of man power?
 - Here a short list of some specific tasks which are missing manpower:
 - Load balancing & dataflow regulation
 - Benchmarking of different solutions considered for the data management in the O² facility

Q3: Role of Tier1/2 and AF

Chapter 4 of TDR

- Q4: AF candidates
 - The O² project is looking for one AF candidate in North America, one in Asia and one in Europe. Several computing centers have shown interest but no decision has been taken yet. One AF in Japan would be an excellent solution.

• Q5: detail of CR0/1 status and plan.

The plans for CR0 and CR1 are described in the TDR Chapter 10 (Sections 10.2 and 10.3).The status is that CR1 is ready but is used during Run2 and will be available to be used by the end of 2018.The present baseline for CR0 is to use computing data center containers. A market survey for producers of such containers has been performed and the technical specification for the invitation to tender is being prepared.

Computing Rooms

- CR0: new room and infrastructure needed on the surface
 - Ongoing Market Survey Survey of companies for the supply of Container Data Centers (24 companies contacted so far)
 - Water or free air cooled
 - Will be followed by the issue of an invitation to tender to qualified and selected firms in Q3/2016
 - Done with LHCb
- CR1:
- Reuse existing room
- Adequate power and cooling for the detector read-out

26

CR0 location at P2

Computing Room 0 (CR0)

- Commercial Container Data Centers
 - 2015-16 Market Survey → Invitation Tender → Purchase lab (20-30 % of the total capacity)
 - 2018 Move lab to P2 and implement first slice of CR0 (10% EPN and DS)
 - 2020 Purchase CR0 addition (70-80 %) and full deployment

27

• Q6: O2 near term plan

- We have several short term milestones in 2016 to release a prototype or a first version of some O² packages:
 - Condition & Calibration DB,
 - DQM,
 - Control Configuration & Monitoring Modules,
 - ALFA,
 - ITS/TPC simulation,
 - ITS/TPC reconstruction,
 - calibration demonstrator.
 - A first version of the whole FLP software will be released early 2017.

• Q7: status of participants of ALICE members in O2

30 Institutes participating

	Table 2.1: Institutes participating in the O ² Project.							
	Country	City	Institute	Acronym	Team Leader			
1	Brasil	São Paulo	University of São Paulo	USP	Marcelo Gameiro Munhoz			
2	CERN	Geneva	European Organization for Nuclear Research	CERN	Wisla Carena			
3	Croatia	Split	Technical University of Split	FESB	Sven Gotovac			
4	Czech Republic	Rez u Prahy	Nuclear Physics Institute,	ASCR	Michal Sumbera			
			Academy of Sciences of the Czech Republic					
5	France	Clermont-Ferrand	Laboratoire de Physique	LPC	Philippe Crochet			
			Corpusculaire (LPC), Univer-					
			site Blaise Pascal Clermont-					
6	France	Grenoble	Laboratoire de Physique	LPSC	Christophe Euroet			
		Citerio IC	Subatomique et de Cos-	14 00	commoputer august			
			mologie (LPSC), Université					
			Grenoble-Alpes, CNRS-					
			IN2P3					
7	France	Nantes	SUBATECH, Ecole des Mines	SUBATECH	Gines Martinez-Garcia			
			de Nantes, Université de					
8	France	Orsay	Institut de Physique Nucléaire	IPNO	Christophe Suire			
0	1 mine	Orsay	(IPNO). Université Paris-Sud.	11100	Cansopae Saire			
			CNRS-IN2P3					
9	France	Strasbourg	Institut Pluridisciplinaire Hu-	IPHC	Christian Kuhn			
			bert Curien, Université de					
10	6	D	Strasbourg, CNRS-IN2P3					
10	Germany	Darmstadt	Research Division and	GSI	Silvia Masciocchi			
			EMPEME Matter Insutute					
			trum für Schwerionen-					
			forschung					
11	Germany	Frankfurt	Frankfurt Institute for Ad-	FIAS	Volker Lindenstruth			
			vanced Studies, Johann Wolf-					
		-	gang Goethe-Universität					
12	Germany	Frankfurt	Institut für Informatik, Johann	IRI	Udo Kebschull			
			Frankfurt					
13	Hungary	Budapest	Wigner RCP Hungarian	WRCP	Gergely Barnafoldi			
			Academy of Sciences					
14	India	Jammu	University of Jammu	JU	Anju Bhasin			
15	India	Mumbai	Indian Institute of Technology	IIT	Basanta Kumar Nandi			
16	Indonesia	Bandung	Indonesian Institute of Sci-	LIPI	Suharyo Sumowidagdo			
17	Korea	Dasieon	Koma Institute of Science and	VISTI	Usena Jin Jana			
11	Notca	Dacjeon	Technology Information	Matt	racig vin vang			
18	Korea	Sejong City	Korea University	KU	Hyoenjoong Cho			
19	Poland	Warsaw	Warsaw University of	WUT	Jan Marian Pluta			
	_		Technology					
20	Romania	Bucharest	Institute of Space Science	ISS	Catalin-Lucian Ristea			
21	South Africa	Cape Town	University of Cape Town and	UCT	Thomas Dietel			
22	Thailand	Banekok	King Monekut's University of	KMITT	Timmer Achalakul			
		mangana	Technology Thonburi	inter i	Contraction of the Contraction			
23	Thailand	Bangkok	Thammasat University	TU	Kasidit Chanchio			
24	Turkey	Konya	KTO Karatay University	KTO	Ali Okatan			
25	United States	Berkeley, CA	Lawrence Berkeley National	LBNL	Peter Martin Jacobs			
26	The local day	Dennis Mar	Laboratory	NOT I	Community in the			
20	United States	Detroit, MI	wayne State University	wsu	Sergey Voloshin			
28	United States	Knoxville TN	University of Tennessee	UTK	Kenneth Francis Read			
29	United States	Oak Ridge, TN	Oak Ridge National Labora-	ORNL	Thomas Michael Cormier			
			tory					
30	United States	Omaha, NE	Creighton University	CU	Michael Gerard Cherney			
31	United States	Pasadena, CA	California Institute of	CALTECH	Harvey Newman			
			Technology					

- Q7: status of participants of ALICE members in O2
 - 30 Institutes participating
 - Personnel needed:
 - PH: physicist
 - SW: software developper
 - FW: firmware developper
 - HW: hardware experts
 - SY: system administrator

A Large Ion Collider Experiment

WBS	CWGs	Activity	Contact Person	Competence	2015	2016	2017	2018	2010	Total
7	1	Architecture	S. Chapeland							
			-	PH	0.5	0.5				1.0
				SW	0.5	0.5				1.0
8	2	Tools and procedures	A. Telesca	SW	0.3	0.3	0.2	0.1	0.1	1.0
9	11	Software process	D. Berzano	SW	0.3	0.3	0.2	0.1	0.1	1.0
12	4	Software framework	P Hristov							
	13	and data model	1.1110101	PH	1.2	1.2	1.2	1.2	1.2	6.0
				SW	2.0	3.0	1.0	1.0	1.0	8.0
17	10	Control configuration	V Chibanta							
17	10	monitoring and logging	v. Chioanie	SW	2.0	2.0	2.0	3.0	4.0	13.0
10		Designed and region in						0.0		
10	3	Dataflow,	I. Legrand	cw	20	20	10	0.5	0.5	61
		detector read-out		SW	1.5	1.5	1.0	1.0	1.0	6.0
				1.4	1.5	1.5	1.0	1.0	1.0	0.0
11	3	Modelling and Simulation	I. Legrand	SW	1.0	1.0	1.0	0.5	0.5	4.0
18	5	Computing platforms	M. Kretz							
				SW	2.0	2.0	2.0	1.0	1.0	8.0
				FW	0.5	0.5				1.0
14	6	Calibration software	C. Zampolli							
		Core	-	PH	1.5	1.0	1.0	1.0	1.0	5.5
				SW	1.2	1.2	1.2	1.2	1.2	6.0
		Detector-specific		PH	1.5	1.0	1.0	1.0	1.0	5.5
				sw	2.2	2.2	2.2	2.2	3.2	12.0
13	7	Reconstruction	R. Shahoyan							
		Core		PH	2.5	2.0	2.0	2.0	2.0	10.5
				SW	2.0	2.0	2.0	2.0	2.0	10.0
		Detector		FW	1.0	1.0	1.5	1.5	1.0	6.0
		Detector-specific		PH	1.5	1.0	1.0	1.0	1.0	3.3
				3₩	6.6	6-6	6.6	6.6	3.6	143
15	8	Physics simulation	A. Morsch							
		Core		PH	1.0	1.0	1.0	1.0	1.0	5.0
		Detector specific		DU	2.0	2.0	2.0	2.0	2.0	10.0
		Detector-specific		sw	2.2	22	2.2	2.2	3.2	12.0
		Data and its control	D	0.0	2.5	2.0	2.2		2.16	1.00
10	9	Data quality control	B. von Haller	DI		10	0.5	0.5	0.5	2.4
		and visualisation		SW	2.0	3.0	2.0	2.0	3.0	120
		al como como		2.1	2.0	5.0	2.00		2.0	
19, 20	12	O* facility hardware	H. Engel						2.0	
		procurement, installation		nw sv	0.2	0.2	0.2	1.5	3.0	4.
		-1		31	0.2	0.2	0.5	1.0	1.5	3.
21		O ² facility and Grid deployment	L. Betev	SY			0.3	3.0	3.0	61
		one apportante		PU	11.2	10.7	0.7	0.7	0.7	51.4
				SW	22.9	24.9	20.2	19.0	24.0	1110
		Grand Total		FW	3.0	3.0	2.5	2.5	2.0	13.0
				HW				1.5	3.0	4.5
				SY	0.2	0.2	0.6	4.0	4.5	9.5

- Q7: status of participants of ALICE members in O2
 - 30 Institutes and 90 collaborators participating
 - Personnel needed
 - Personnel available

2015-2017

Table 6.2:	Available personne	by country and	per year for	the different activit	ties of the O ²	project during the	period 2015-2017.
------------	--------------------	----------------	--------------	-----------------------	----------------------------	--------------------	-------------------

Country			2015					2016					2017		
	PH	SW	FW	HW	SY	PH	SW	FW	HW	SY	PH	SW	FW	HW	SY
Brasil															
CERN	3.0	1.0	0.6		0.2	2.0	2.0	0.6		0.2	1.0	3.0	0.6	0.5	0.7
Croatia		3.0					3.0					3.0			
Czech Republic	0.4					0.4					0.3				
France	1.3	2.0				1.3	2.0				1.3	2.0			
Germany	1.2	1.0	1.0			1.2	1.0	1.0			1.2	1.0	1.0		
Hungary		2.0	2.0				2.0	2.0				2.0	2.0		
India		0.9					1.4					1.6			
Indonesia	1.0	4.0				1.0	4.0				1.0	4.0			
Korea		3.0					3.0					3.0			
Poland	3.0	2.0				2.0	3.0				2.0	3.0			
Romania		0.3					0.3					0.3			
South Africa						2.0					2.0				
Thailand		5.0					4.0					3.0			
Turkey	1.0					1.0					2.0				
United States	1.0	1.1				1.8	1.8				1.9	1.9			
Total	11.9	25.3	3.6		0.2	11.7	27.5	3.6		0.2	12.7	27.8	3.6	0.5	0.7

2018-2019

Table 6.3: Available personnel by country and per year for the different activities of the O² project during the period 2018-2019 and the total for the period 2015-2019.

Country			2018					2019				Total	2015-2	019	
	PH	SW	FW	HW	SY	PH	SW	FW	HW	SY	PH	SW	FW	HW	SY
Brasil															
CERN	1.0	3.0		2.0	1.5	1.0	4.0		3.0	2.5	8.0	13.0	1.8	5.5	5.1
Croatia		3.0					3.0					15.0			
Czech Republic	0.3					0.3					1.7				
France	1.3	2.0				1.3	2.0				6.5	10.0			
Germany	1.2	1.4	1.0			1.2	1.4	1.0			6.0	5.8	5.0		
Hungary		2.0	2.0				2.0	2.0				10.0	10.0		
India		1.6					1.6					7.1			
Indonesia	1.0	4.0				1.0	4.0				5.0	20.0			
Korea		3.0					3.0					15.0			
Poland	2.0	3.0				2.0	3.0				11.0	14.0			
Romania		0.3					0.3					1.5			
South Africa	2.0										6.0				
Thailand												12.0			
Turkey	2.0					3.0					9.0				
United States	2.2	2.2				2.0	2.1				8.9	9.1			
Total	13.0	25.5	3.0	2.0	1.5	11.8	26.4	3.0	3.0	2.5	61.1	132.5	16.8	5.5	5.1
Grand Total											221.0				

- Q8: O2 long term plan
 - ➡ The long-term plan goals are:
 - H1 2019: simulation challenge
 - H2 2019: 10% data challenge
 - H1 2020: global system commissioning

Q9 Budget

The budget is briefly described in the TDR Chapter 11 (Section 11.5 and 11.6). Please find attached the UCG document which describes our budget in more details

Table 11.4: Cost estimates and spending profile.

Item	Cost estimate	Spending profile		
		2018	2019	
	(kCHF)	(kC	CHF)	
Infrastructure	776	465	310	
FLPs and CRUs	916	550	366	
EPNs	5,152	515	4,636	
Data storage	2'168	217	1,951	
Network	1,018	509	509	
Servers	438	306	131	
Total	10,467	2,563	7,905	

9,470 + 0,996

• Q9 Budget

➡ Core: 6.579 MCHF ; M&O-A: 2.991 MCHF

Contributions Core

Table 4.2: Contributions from the funding a	gencies.		
Funding Agency	Country	(kEuro)	(kCHF)
Federal Ministry of Education and Research (BMBF)	Germany	1,000	1,044
CERN	Switzerland		3,500
Gesellschaft fü Schwerionenforschung (GSI)	Germany	2,000	2,088
National Research, Development and Innovation Office (NRDIO)	Hungary		125
Total			6,757

ALICE[©] | JPARC | 24/05/2016 | Yves Schutz 39

- Q10 Which contributions are expected from Japan?
 - This depends very much about your needs, your goals and your resources. Any combination of contributions in the following areas would be welcome:
 - software development
 - (https://docs.google.com/document/d/1QK1JWBnOr_9ciFyip8np0EHXjzudtMkeEz5mizcHWPg/edit)
 - availability of an AF
 - contribution to the project budget

- Q11 Status and detailed plan of EPN and FLP activities, missing parts, manpower, possible contributions from ALICE-J
 - ➡ FLP: initial compression -> TF
 - 1-2 RO board

lable	10.1: Numbe	er of read-out boards a	nd FLPs per dete	ctor to O ² s
	Detector	Number of	Read-out	Number
		read-out boards	board type	of FLPs
	ACO	1	C-RORC	1
	CPV	1	C-RORC	1
	CTP	1	CRU	1
	DCS	1	Network	1
	EMC	4	C-RORC	2
	FIT	1	C-RORC	1
	HMP	4	C-RORC	2
	ITS	23	CRU	23
	MCH	25	CRU	13
	MFT	14	CRU	7
	MID	2	CRU	1
	PHS	4	C-RORC	2
	TOF	3	CRU	3
	TPC	324	CRU	162
	TRD	54	CRU	27
	ZDC	1	CRU	1
	Spares			2
	Total			250

- Q11 Status and detailed plan of EPN and FLP activities, missing parts, manpower, possible contributions from ALICE-J
 - ➡ FLP: initial compression -> TF
 - 1-2 RO board
 - FLP prototype assembly by the end of this year + several releases of the FLP software (ALICE-J contribution welcome)

- Q11 Status and detailed plan of EPN and FLP activities, missing parts, manpower, possible contributions from ALICE-J
 - EPN: Compression, reconstruction -> CTF
 - 2 CPU × 32 cores (at least)
 - 2 GPU cards × 2 GPUs
 - prototyping activities to start when reconstruction software ready

