

Loop-Induced Processes: Status in MG5_aMC@NLO

Eleni Vryonidou Centre for Cosmology, Particle Physics and Phenomenology Université catholique de Louvain

> ERC Miniworkshop CERN 4/7/16

Outline

- Status of Loop-Induced processes in MG5_aMC
- Physics applications
- Future directions

Automation of event generation

Hirschi and Mattelaer: arXiv:1507.00020 Part of the official release since 2.3

Process		Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \Delta_{PDF}$	Ref.
Triple bosons			$\sqrt{s} = 13$ TeV		
*c.1	$pp {\rightarrow} HHH$	pp>hhh [QCD]	$3.968 \pm 0.010 \cdot 10^{-5}$	+31.8% +1.4% -22.6% -1.4%	[59]
$^{\dagger}c.2$	$gg \rightarrow HHZ$	gg>hhz [QCD]	$5.260 \pm 0.009 \cdot 10^{-5}$	+31.2% +1.3% -22.2% -1.3%	[-]
$^{\dagger}c.3$	$gg \rightarrow HZZ$	gg>hzz [QCD]	$1.144 \pm 0.004 \cdot 10^{-4}$	+31.1% + 1.2% -22.2% - 1.3%	[-]
$^{\dagger}c.4$	$gg { m \rightarrow} HZ\gamma$	gg>hza[QCD]	$6.190 \pm 0.020 \cdot 10^{-6}$	+29.3% +1.0% -21.2% -1.2%	[-]
$^{\dagger}c.5$	$pp \rightarrow H\gamma\gamma$	pp>haa [QCD]	$6.058 \pm 0.004 \cdot 10^{-6}$	+30.3% +1.1% -21.8% -1.3%	[-]
*c.6	$gg\!\rightarrow\! HW^+W^-$	g g > h w+ w- [QCD]	$2.670 \pm 0.007 \cdot 10^{-4}$	$+31.0\% +1.2\% \\ -22.2\% -1.3\%$	<mark>[60</mark>]
$^{\dagger}c.7$	$gg \rightarrow ZZZ$	gg>zzz[QCD]	$6.964 \pm 0.009 \cdot 10^{-5}$	$+30.9\% +1.2\% \\ -22.1\% -1.3\%$	[-]
$^{\dagger}c.8$	$gg \rightarrow ZZ\gamma$	gg>zza[QCD]	$3.454 \pm 0.010 \cdot 10^{-6}$	$^{+28.7\%}_{-20.9\%}$ $^{+0.9\%}_{-1.1\%}$	[-]
*c.9	$gg \rightarrow Z\gamma\gamma$	gg>zaa [QCD]	$3.079 \pm 0.005 \cdot 10^{-4}$	$^{+28.0\%}_{-20.9\%}$ $^{+0.7\%}_{-1.0\%}$	[61]
$^{\dagger}c.10$	$gg \rightarrow ZW^+W^-$	g g > z w+ w- [QCD]	$8.595 \pm 0.020 \cdot 10^{-3}$	$^{+26.9\%}_{-19.5\%}$ $^{+0.6\%}_{-0.6\%}$	[-]
[†] c.12	$gg{\rightarrow}\gamma W^+W^-$	gg>aw+w-[QCD]	$1.822 \pm 0.005 \cdot 10^{-2}$	$\substack{+28.7\% \\ -20.9\% } \substack{+0.9\% \\ -1.1\%}$	[-]

+ A lot more examples + Up to $2 \rightarrow 4$

Merging-Matching at LO

H+jets arXiv:1507.00020 Automated for MLM-merging with PYTHIA6 (PYTHIA8 merging also possible but not automated)

NLO-status

- NLO+PS event generation not automated for loopinduced
- Direct integration of loop matrix elements: aMCSusHi for single Higgs
- NLO reweighting applied to several cases: HH, H+jets, H > tt (through customised code adjustments - 2-loop amplitudes approximated or external codes)
- NLO reweighting automation (work by Olivier):
 - Start with NLO+PS event generation
 - Generate new amplitudes through a reweight card
 - Different weights stored in the event file

- Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter
- EFT in loop-induced processes

- Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter
- EFT in loop-induced processes

Off-shell and interference effects in gg(>H)>VV

Tree and loop interference contributions depend on

Semileptonic decay modes

 Comparison with implementation in gg2VV for a SM (125GeV) Higgs and a heavy (400GeV) Higgs for different selection cuts

Formally Higher-order background is more important

Additional QCD jets in loop-induced VV

Heavy Higgs-light Higgs-continuum

Parameters can be matched to one's favourite model

 $d\sigma/dm_{VV}$ [pb/bin]

A 2HDM example

NLO 2HDM model available through NLOCT [Degrande arxiv:1406.3030]

2HDM Benchmarks can be imported in MG5_aMC@NLO

See also Greiner, Liebler and Weiglein arxiv:1512.07232

- SM Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter
- EFT in loop-induced processes

- SM Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter
- EFT in loop-induced processes

Higgs plus jets at NLO

- H+0jet contribution computed exactly at NLO and matched to the parton shower with aMCSushi (arxiv:1504.06625)
- H+1,2... jets available at NLO in the HEFT (HC model: arxiv:1306.6464)
- Merging possible at NLO in MG5_aMC@NLO with FxFx (arxiv:1209.6215)
- Possibility to compute 1-loop amplitudes for H+1,2,3 jets with MadLoop

Combine 1) the exact 0j NLO result: top and bottom included (aMCSusHi) 2) higher multiplicities at NLO in HEFT

Include the **exact top mass dependence in the real corrections** of H+1,2 jets 2-loop amplitudes only available for H+0j: **Born-normalised HEFT virtual corrections** for all higher multiplicities

(similar to what we did for HH arxiv:1408.6542,1407.0281,1401.7340)

Technical details (1)

Reweighting currently the only viable option:

i.e. generate all the events in HEFT and adjust weights afterwards

- Use weights stored internally for scale and pdf reweighting
- New intermediate event format in version 2.3 allows easier identification of various weights:

$$d\sigma^{(\mathbb{H})} = d\phi_{n+1} \left(\mathcal{R} - \mathcal{C}_{MC} \right) ,$$

$$d\sigma^{(\mathbb{S})} = d\phi_{n+1} \left[\left(\mathcal{B} + \mathcal{V} + \mathcal{C}^{int} \right) \frac{d\phi_n}{d\phi_{n+1}} + \left(\mathcal{C}_{MC} - \mathcal{C} \right) \right] \quad \text{for all } d\phi_{n+1} = 0$$

MC@NLO formalism

i.e. Born, real, virtual, counterterms

$$\begin{array}{ccc} \mathcal{B}, \mathcal{V}, \mathcal{C}^{(int)}, \mathcal{C}_{MC} & \times & \mathcal{B}_{FT} / \mathcal{B}_{HEFT} \\ \mathcal{R} & \times & \mathcal{R}_{FT} / \mathcal{R}_{HEFT} \end{array} \xrightarrow{} \mathbf{New \ event \ weight}$$

NLO reweighting automated by Olivier (upcoming paper)

Technical details (2)

1) Loop Amplitude library

Provides results for all 1-loop matrix elements (Born and real)

- Created and compiled beforehand using a script
- Input: all the processes (in PDG codes) that will be needed for H+1,2,3 jets
- Similar to the usual MadLoop standalone output but now all combined in a dynamic library (only tops in the loops)
- Library wrapper takes PDG codes as inputs, checks for permutations of PDG codes/ momenta to call the right amplitude

2) 0-jet contribution

- Not reweighted, obtained by linking the exact matrix elements (1-loop and 2-loop) from aMCSusHi
- Top x bottom contribution and bottom² included
- Events generated separately, showered with the appropriate/different scales (1409.0531)
- Results added at the end at the plot level

Results can be compared with inclusive NLO results Merging scale dependence also studied Frederix, Frixione, EV, Wiesemann arXiv:1604.03017

Results for H+jets

- SM Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter at the LHC
- EFT in loop-induced processes

- SM Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter at the LHC
- EFT in loop-induced processes

Top-philic simplified DM model

$$\mathcal{L}_{DM}^{Y_0} = \bar{\chi}(g_{DM}^S + ig_{DM}^P \gamma^5)\chi Y_0$$

$$\mathcal{L}_{SM}^{Y_0} = \bar{t} \frac{y^t}{\sqrt{2}} (g_t^S + ig_t^P \gamma^5) t Y_0$$

Mediator couples only to the top (scalar/pseudoscalar and vector/axial-vector)

Missing E_T processes: Tree-level: top-pair associated production Loop-Induced: mono-jet, mono-Z, mono-photon, mono-Higgs

Mattelaer, EV 1508.00564

Jets+Missing ET:Scalar mediator

 $|\sigma d\sigma/dp_T^{miss}|$

Benchmark	Resonant	Heavy mediator	Heavy DM
Mediator mass	200	1000	400
Dark matter mass	50	1	500

- MLM merged samples of 0,1,2jets
- All scenarios harder than the Z background
 - Resonant scenario gives fastest falling distributions
 - Used also in arXiv: 1605.09242 (more in Antony's talk)

$$g_{DM}^S = g_t^S = 1$$

Mono-X processes

Selection Rules: charge conjugation invariance forbids certain processes

Process	S	Р	V	А
mono-Z	\checkmark	\checkmark		
mono-photon	X	X	\checkmark	X
mono-Higgs	\checkmark	\checkmark	X	\checkmark

Signal or absence of signal can be used to identify the nature of the propagator

Mono-Z

Benchmark	scalar	pseudoscalar	$12T_{\rm A}/$
Resonant	$2.99 \cdot 10^{-2} + 36\% + 1.3\% \\ -25\% - 1.4\%$	$3.28 \cdot 10^{-2} + 36\% + 1.3\%$ -25% - 1.4%	IJIEV
Heavy mediator	$2.20 \cdot 10^{-4} {}^{+43\%}_{-28\%} {}^{+2.5\%}_{-2.5\%}$	$2.08 \cdot 10^{-4} {}^{+43\%}_{-28\%} {}^{+2.6\%}_{-2.5\%}$	σ in pb
Heavy DM	$4.75 \cdot 10^{-7} {}^{+45\%}_{-29\%} {}^{+3.5\%}_{-3.4\%}$	$1.40\cdot 10^{-6} {}^{+44\%}_{-28\%} {}^{+3.2\%}_{-3.1\%}$	

Small cross-sections for loop-induced See:1509.05785 for tree level production

Similar shapes for scalar and pseudoscalar

ATLAS searches 1309.4017,1404.0051

Mono-Higgs

Benchmark	scalar	pseudoscalar	
Resonant	$6.98 \cdot 10^{-2} + 34\% + 1.0\% \\ -24\% - 1.2\%$	$0.139 \begin{array}{c} +33\% \\ -23\% \\ -1.2\% \end{array} +1.0\%$	
Heavy mediator	$9.31 {\cdot 10^{-5}}_{-27\%}^{+41\%}{}^{+2.1\%}_{-2.1\%}$	$5.79 \cdot 10^{-5} {}^{+40\%}_{-27\%} {}^{+1.9\%}_{-1.9\%}$	σ in nh
Heavy DM	$1.28~\cdot 10^{-7} {}^{+43\%}_{-28\%} {}^{+3.0\%}_{-2.9\%}$	$2.44~\cdot 10^{-7}{}^{+42\%}_{-28\%}{}^{+2.6\%}_{-2.6\%}$	

Small cross-sections (similar to SM HH cross-section) Different shapes for scalar and pseudoscalar

ATLAS search: 1506.01081

- SM Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter at the LHC
- EFT in loop-induced processes

- SM Higgs studies
 - Off-shell -Interference effects in gg > VV
 - Higgs+Jets with FxFx
- Dark Matter at the LHC
- EFT in loop-induced processes

Top-quark operators and how to look for them

Operators entering various processes: Global approach needed Towards computing all these at NLO in QCD (more tomorrow)

Top-operators in non-top final states

conjugation invariance

EFT in Higgs-top physics

$$egin{aligned} O_{t\phi} &= y_t^3 \left(\phi^\dagger \phi
ight) \left(ar{Q} t
ight) ar{\phi} \ O_{\phi G} &= y_t^2 \left(\phi^\dagger \phi
ight) G^A_{\mu
u} G^{A \mu
u} \ O_{tG} &= y_t g_s (ar{Q} \sigma^{\mu
u} T^A t) ar{\phi} G^A_{\mu
u} \end{aligned}$$

Entering: ttH, H, H+jets, HH...

Future directions

- Loop-Induced processes at NLO:
 - NLO+PS: currently not automated
 - Reweighting required
- Limited by the availability of two-loop results
 - 2-loop amplitudes can be linked as a library
- gg > VV processes a good example to study

Thank you for your attention