

Double diffraction at TeVatron and LHC in the NLL-BFKL framework

Content

Introduction

- BFKL evolution
- Process of interest
- Going to NLL-BFKL

Mueller-Navelet jets

- C. Marquet, C. Royon, arXiv:0704.3409v2
- Correlations in azimuthal angle $d\sigma/d\Delta\Phi$
- Effects of systematic uncertainties

Gap between jets

- F.C, O. Kepka, C. Marquet, C. Royon, arXiv:0903.4598v1
- Comparison with D0 data
- Predictions for LHC
- Effects of systematic uncertainties

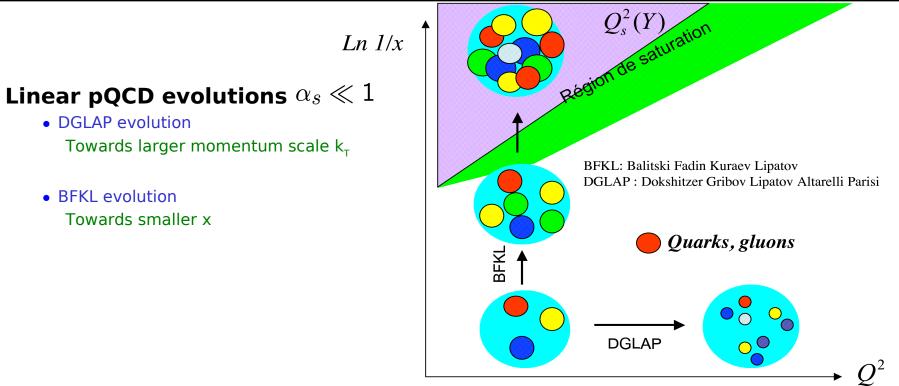
Conclusion

Content

Introduction

- BFKL evolution
- Process of interest
- Going to NLL-BFKL

Mueller-Navelet jets

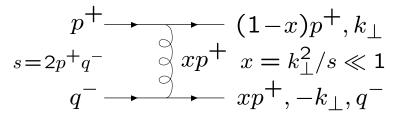

- C. Marquet, C. Royon, arXiv:0704.3409v2
- Correlations in azimuthal angle $d\sigma/d\Delta\Phi$
- Effects of systematic uncertainties

Gap between jets

- F.C, O. Kepka, C. Marquet, C. Royon, arXiv:0903.4598v1
- Comparison with DØ data
- Predictions for LHC
- Effects of systematic uncertainties

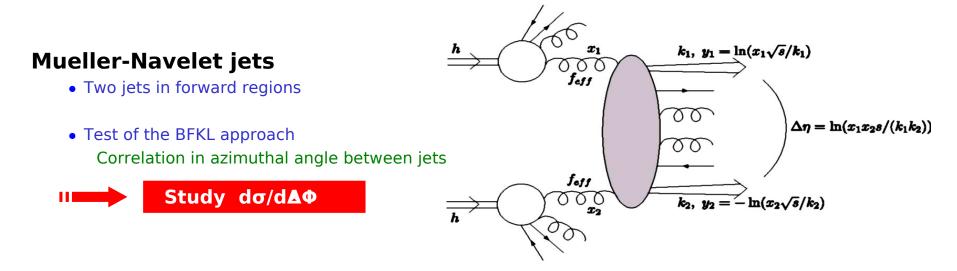
Conclusion

Introduction : BFKL evolution



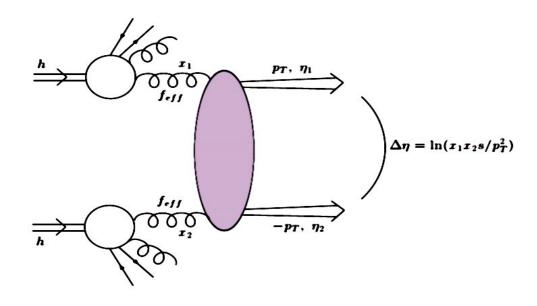
2 to 2 scattering processes with same k_{T}

• DGLAP evolution


No additional radiation is possible since jets have same $k_{\!_{\rm T}}$

• BFKL evolution wiin Regge limit $s \gg -t = k_{\perp}^2$ Large rapidity interval between final-state particles Resummation of the large higher-order leading logs

 $\Delta \eta = \ln(s/k_T^2)$


Processes of interest

Gaps between jets

- No energy deposits between jets Observed at TeVatron and HERA
- Test of the BFKL approach Production cross-sections

Going to NLL-BFKL

Going to NLL-BFKL

- Large corrections w.r.t. LL and lead to unphysical results
 NLL BFKL kernels need resummation
 Truncation of the perturbative series → spurious singularities in Mellin (γ) space
- Use of Salam's regularisation schemes

Singularities cancel when add some higher order corrections \rightarrow meaningful NLL-BFKL results S3 and S4 schemes for forward jet production (modulo the impact factors taken at LL)

Full NLL-BFKL calculation available

• Resolution of implicit equation performed by numerical methods

$$\chi_{NLL} \xrightarrow{\text{regularisation}} \chi_{S4} \xrightarrow{\text{implicit equation}} \chi_{eff}$$

$$\chi_{eff}(\gamma, \alpha) = \chi^{NLL-S4}(\gamma, \alpha, \chi_{eff}(\gamma, \alpha))$$

Content

Introduction

- BFKL evolution
- Process of interest
- Going to NLL-BFKL

Mueller-Navelet jets

- C. Marquet, C. Royon, arXiv:0704.3409v2
- Correlations in azimuthal angle $d\sigma/d\Delta\Phi$
- Effects of systematic uncertainties

Gap between jets

- F.C, O. Kepka, C. Marquet, C. Royon, arXiv:0903.4598v1
- Comparison with DØ data
- Predictions for LHC
- Effects of systematic uncertainties

Conclusion

Correlations in azimuthal angle $d\sigma/d\Delta\Phi$

Theoretical predictions

• DGLAP evolution

Jets are back-to-back $d\sigma/d\Delta\Phi$ should peak towards π No dependence vs $\Delta\eta$

• BFKL evolution

Smoother distribution via multi-gluon emission

Cross-section in the BFKL framework

• Relevant variables

$$y = \frac{y_1 + y_2}{2}, \quad Q = \sqrt{k_1 k_2}, \quad R = \frac{k_2}{k_1}, \quad \Delta \Phi = \pi - \phi_1 + \phi_2$$

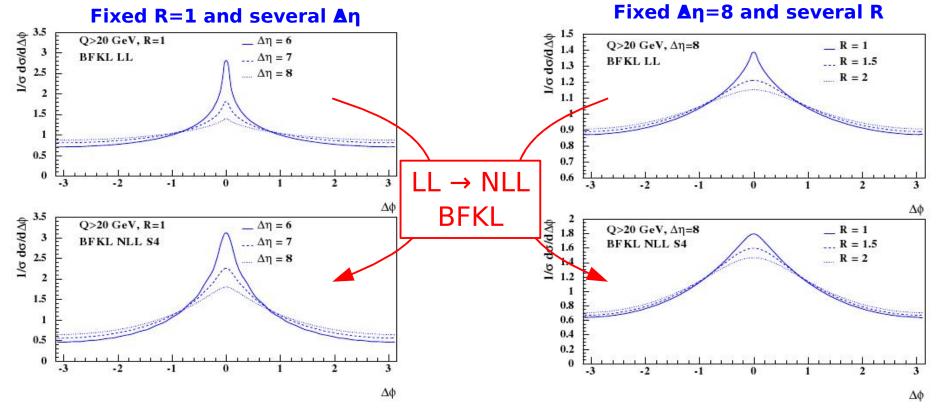
• Normalized $\Delta\Phi$ distribution

Sum over conformal spins

$$2\pi \frac{d\sigma}{d\Delta\eta dR d\Delta\Phi} \Big/ \frac{d\sigma}{d\Delta\eta dR} = 1 + \frac{2}{\sigma_0(\Delta\eta, R)} \sum_{p=1}^{\infty} \sigma_p(\Delta\eta, R) \cos(p\Delta\Phi)$$

$$\sigma_p(\Delta\eta, R) = \int_{E_T}^{\infty} \frac{dQ}{Q^3} \alpha_s(Q^2/R) \alpha_s(Q^2R) \left(\int_{y_<}^{y_>} dy \ x_1 f_{eff}(x_1, Q^2/R) x_2 f_{eff}(x_2, Q^2R) \right)$$

 \Rightarrow parameter-free predictions

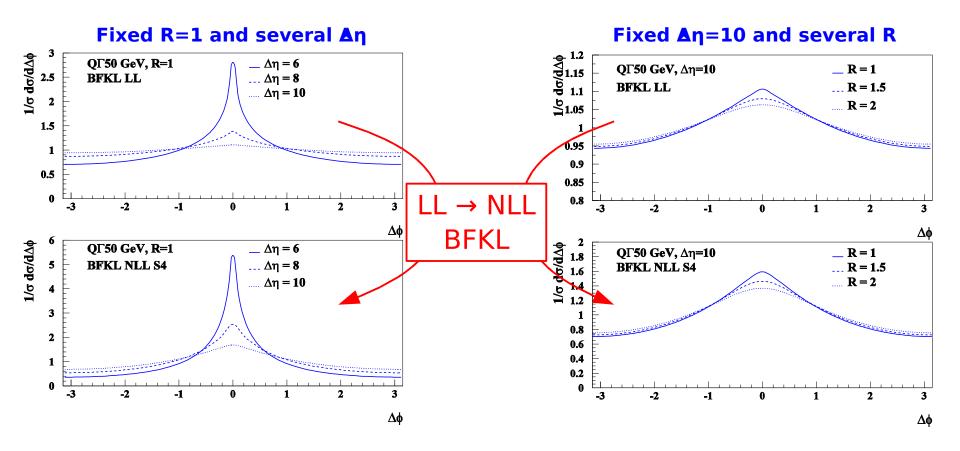

LL / NLL BFKL kernel

 $\int_{1/2-\infty}^{1/2+\infty} \frac{d\gamma}{2i\pi} R^{-2\gamma} e^{\bar{\alpha}(Q^2)\chi_{eff}[p,\gamma,\bar{\alpha}(Q^2))\Delta\eta}$

Results for $(1/\sigma) d\sigma/d\Delta\Phi$

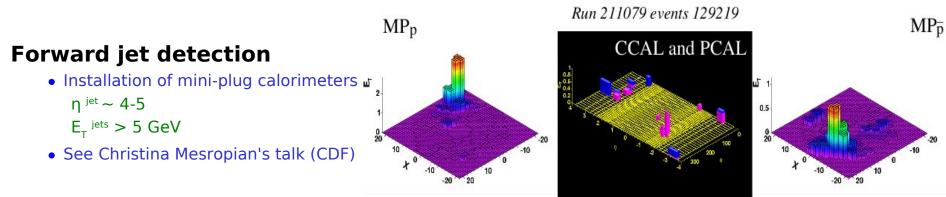
Results at TeVatron

- Selection cuts
 - $E_{T}j^{et}$ > 20 GeV
 - $|(y_1+y_2)/2| < 0.5$ for a symmetric situation

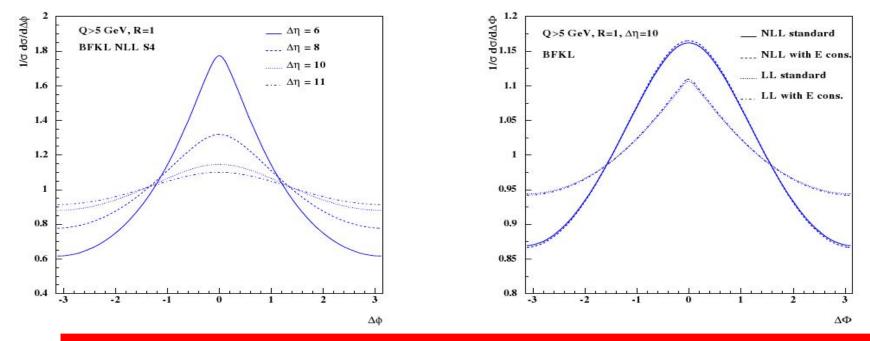

Peak for back-to-back jets.

Flatten **A** Φ distribution with increasing rapidity interval **A** η or jet E_T ratio. Lower decorrelation with NLL-BFKL description.

Results for $(1/\sigma) d\sigma/d\Delta\Phi$

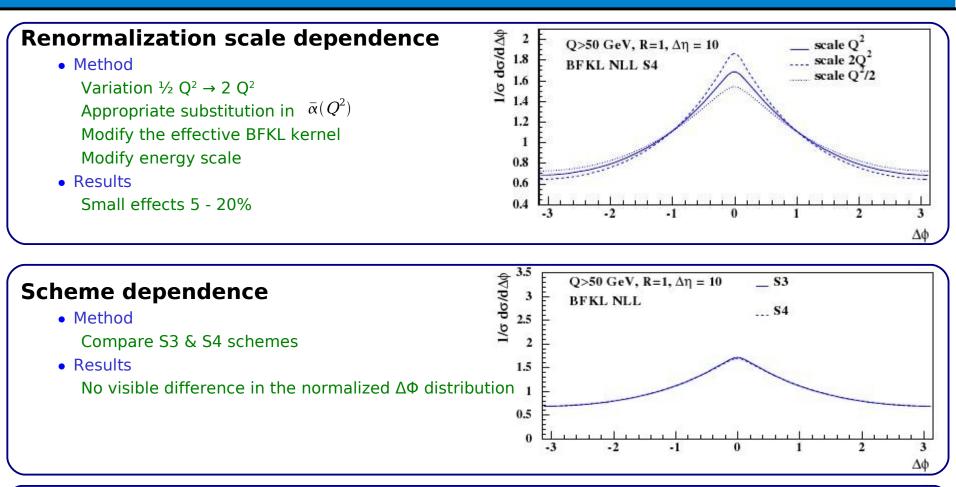

Results at LHC

- Selection cuts
 - $E_{\tau}j^{et}$ > 50 GeV
 - $|(y_1+y_2)/2| < 0.5$ for a symmetric situation



Decorrelation with NLL-BFKL description more pronounced at LHC

Mueller-Navelet jets at CDF



Expectations with BFKL framework

ΔΦ decorrelation between jets can be seen at CDF using the miniplugs. Saturation effects could play an important role at these transverse momenta.

Systematic uncertainties

PDF and impact factor uncertainties

- PDF uncertainties cancel in this ratio (1/ σ) d σ /d $\Delta \Phi$: negligible effect
- The effect of NLO impact factor is suppressed in this ratio

ΔΦ between forward jets is an interesting observable

Content

Introduction

- BFKL evolution
- Process of interest
- Going to NLL-BFKL

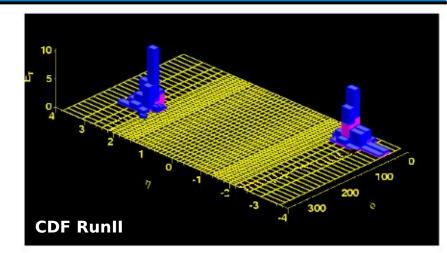
Mueller-Navelet jets

- C. Marquet, C. Royon, arXiv:0704.3409v2
- Correlations in azimuthal angle $d\sigma/d\Delta\Phi$
- Effects of systematic uncertainties

Gap between jets

- F.C, O. Kepka, C. Marquet, C. Royon, arXiv:0903.4598v1
- Comparison with DØ data
- Predictions for LHC
- Effects of systematic uncertainties

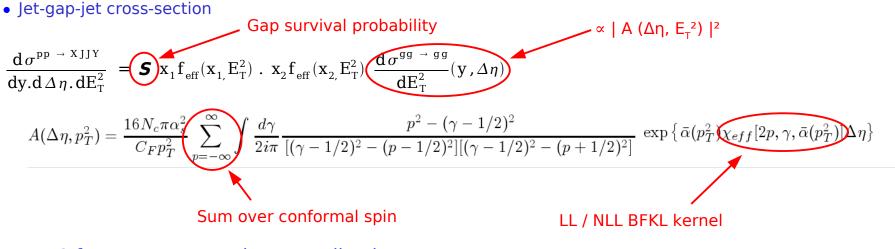
Conclusion


Central rapidity gaps between forward jets

Different models proposed

- QCD di-jets production
 Soft QCD radiations → no gaps
- Color-singlet exchange

Gap between jets

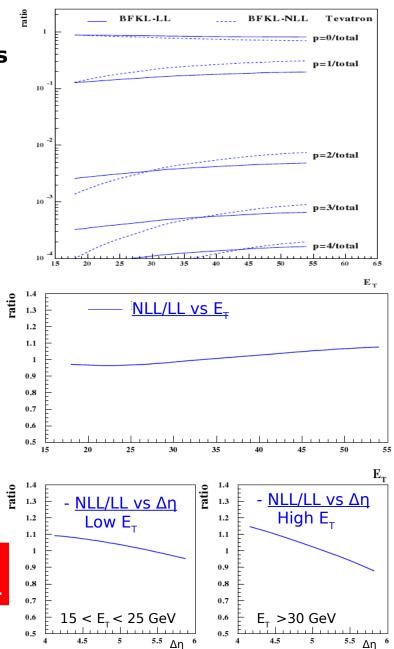

One color-singlet candidate is the BFKL pomeron

Cross-section in the BFKL framework

• Relevant variables

$$\mathbf{y} = \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}$$
; $\Delta \eta = |\mathbf{y}_1 - \mathbf{y}_2|$

 \Rightarrow 1 free parameter : the normalization


Effect of higher-order BFKL corrections

Contributions from non-zero conformal spins

- Not perfomed before
- Large contribution
 - +20% for p=1
 - + 1% for p=2

Larger contribution at high $E_{_{T}}$ and at low $\Delta\eta$

Larger contribution at NLL-BFKL

LL / NLL-BFKL comparison

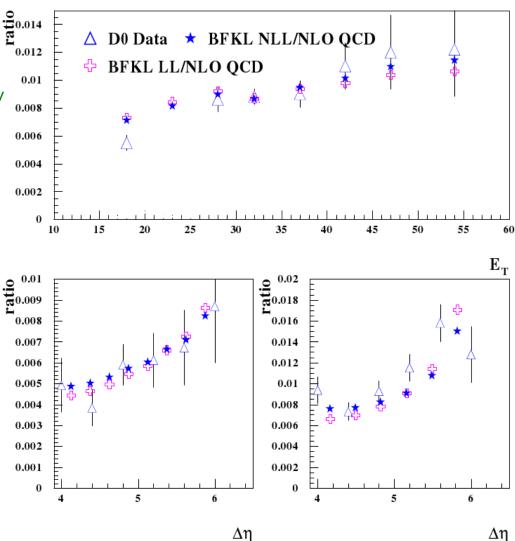
- Normalization is a free parameter
 Will be adjusted to describe the data
 → Compare the shape of distributions
- Small differences in shape NLL effect more important at high $E_T \rightarrow +10\%$ Dependence vs $\Delta\eta$

Large higher-order corrections

 $p \neq 0$ contributions are as large as LL \rightarrow NLL

Comparisons with DØ data

DØ data selection


- - Central gap $\Delta \eta > 2$ with no significant energy
- Fraction of di-jets events with gap

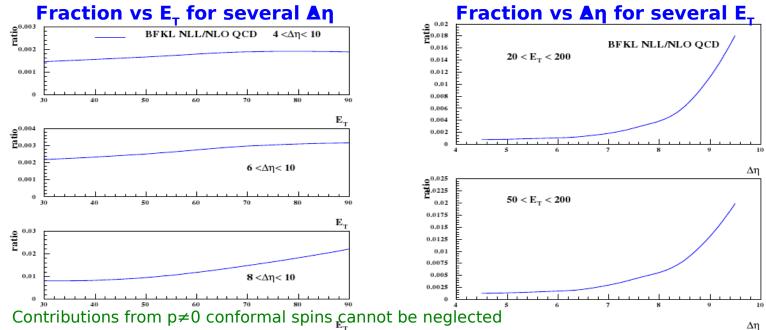
Prediction

- BFKL jet-gap-jet cross-section
 LL or NLL kernel
 Gap survival probability S=0.1
 Hadronization not taken into account
- Inclusive di-jet cross-section QCD predictions with NLOJet++ Hadronization not taken into account

Comparisons

- Overall normalization fit to data k=0.84 with LL-BFKL prescription k=1.00 with NLL-BFKL prescription
- Shape
 - $E_{_{T}}$, $\Delta\eta$ dependence are well described

Correct agreement between NLL-BFKL prediction and DØ data Need checks with NNLO QCD


Predictions for LHC

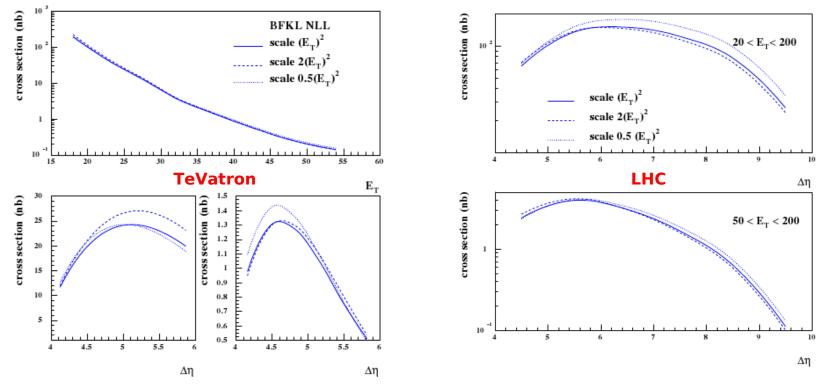
Selection cuts

- Inclusive di-jet sample
 - 2 high E_{τ} jets in opposite forward regions + trigger condition
 - Central gap with no significant energy
 - \rightarrow Need low-luminosity runs

Fraction of gap events

• σ(jet-gap-jet) / σ(inclusive di-jets)

Percentage of jet-gap-jet events increases with $\Delta \eta$ and jet E_{τ}



Systematic uncertainties

Renormalization scale dependence

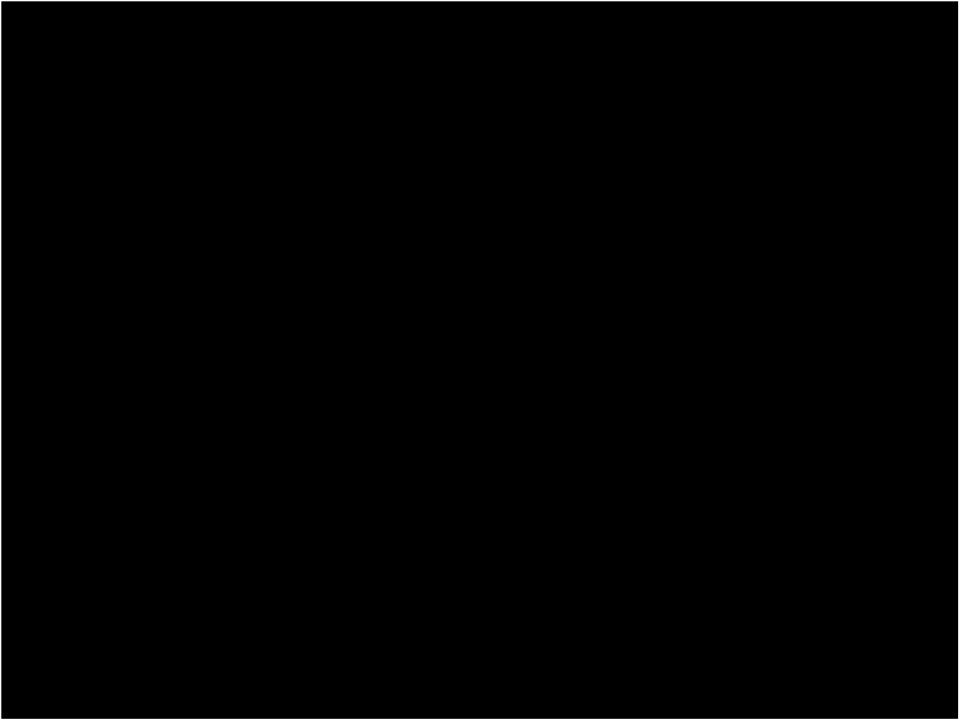
- Method
 - Variation $\frac{1}{2}$ Q² \rightarrow 2 Q²
 - Appropriate substitution in $\bar{\alpha}(Q^2)$
 - Modify the effective BFKL kernel
 - Modify energy scale
- Results

Small effects 10 - 15%

Jet-gap-jet cross-section is a robust test of the BFKL regime

Conclusion

First study of processes in the BFKL framework at next-leading accuracy


Interesting processes : Mueller-Navelet jets and jet-gap-jet events Predictions obtained with the full analytic expression of the NLL-BFKL kernel LL \rightarrow NLL corrections $\sim 10\%$ Non-zero conformal spins have large contributions Systematic uncertainties $\sim 10\%$

Comparison with TeVatron data

NLL-BFKL predictions for jet-gap-jet cross-section is in good agreement with DØ data Analyses with CDF data about Mueller-Navelet jets and jet-gap-jet are ongoing

Predictions for LHC

- High jet-gap-jet cross-section at LHC
- Good calibration of forward jets is needed
- ΔΦ measurements do not require a precise JES (Mueller-Navelet jets)
- idem for Δη for jet-gap-jet

Conclusions

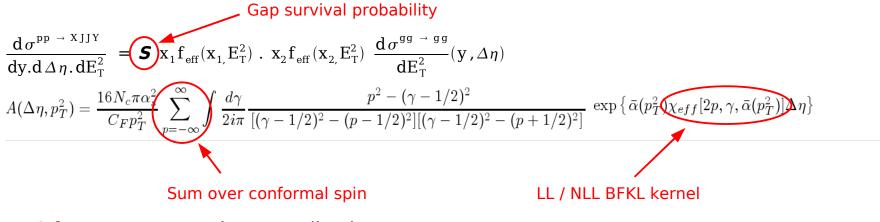
- the correlation in azimuthal angle between two jets gets weaker as their separation in rapidity increases
- we obtained parameter free predictions in the BFKL framework at next-leading accuracy, valid for large enough rapidity intervals
- there is some data from the D0 collaboration at the Tevatron, but for rapidity intervals $\Delta\eta$ smaller than 5
- our predictions underestimate the correlation while pQCD@NLO predictions overestimate it prospects for future measurements:
- at the Tevatron : the CDF miniplugs cannot measure pT well but are suited for azimuthal angle measurements
- at the LHC : feasibility study in collaboration with Christophe Royon (D0/Atlas) and Ramiro Debbe (Star/Atlas)
- Therefore a measurement of the cross-section $d\sigma hh \rightarrow JXJ / d\Delta \eta dR d\Delta \Phi$ at the Tevatron (Run 2) or the LHC would allow for a detailed study of the QCD dynamics of Mueller-Navelet jets. In particular, measurements with values of $\Delta \eta$ reaching 8 or 10 will be of great interest, as these could allow to distinguish between BFKL and DGLAP resummation effects and would provide important tests for the relevance of the BFKL formalism.

Effect of non-zero conformal spin

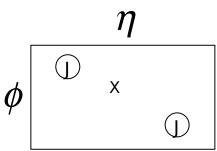
Different models proposed

- QCD di-jets production
 No gap because of soft QCD radiations
- Color-singlet exchange

Gap between jets


One color-singlet candidate is the BFKL pomeron

Cross-section in the BFKL framework


• Relevant variables

$$\mathbf{y} = \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}$$
; $\Delta \eta = |\mathbf{y}_1 - \mathbf{y}_2|$

• Jet-gap-jet cross-section

 \Rightarrow 1 free parameter : the normalization

ideas : study the BFKL evolution with : azimuthal correlations of Mueller-Navelet jets

> Kepka, Marquet, Peschanski and Royon (2007) Balitsky, Fadin, Kuraev and Lipatov (2007)