Search for Anomalous Single Top Production at HERA

Stefano Antonelli on behalf H1 and ZEUS Coll.

University of Bologna & INFN

Madrid, DIS09

S.Antonelli, H1+ZEUS Coll. (Uni.& INFN Bologna) Search for Anomalous Single Top Production at HERA

DIS 09 1 / 17

- 4 同 ト - 4 三 ト - 4

HERA running up to summer 2007

Results on anomalous single top production presented

H1 474 pb^{-1} full $e^{\pm}p$ data sample, HERAI+II published DESY-09-050 ZEUS 277 pb^{-1} (HERAII prelim.) + 120 pb^{-1} (HERAI, publ. PLB 559 (2003) 153)

Anomalous Single Top Production

At HERA single top search is related to events with high- p_T leptons and high missing p_T but also the hadronic decay of W can be exploited.

Anomalous single top production (BSM) proceeds via FCNC with a coupling $\kappa_{tu\gamma}$.

 $\mathcal{L} = \frac{ee_u}{\Lambda} \bar{t} \sigma_{\mu\nu} q^{\nu} \kappa_{\gamma} u A^{\mu}$

couplings to c and Z are neglected

In SM, events with isolated lepton are mainly due to W production (~ 1.2 pb).

(日) (日) (日) (日)

HERA experiments are sensitive to u (valence quark) and anomalous γ exchange

Anomalous Single Top Production

At HERA single top search is related to events with high- p_T leptons and high missing p_T but also the hadronic decay of W can be exploited.

Anomalous single top production (BSM) proceeds via FCNC with a coupling $\kappa_{tu\gamma}$.

 $\mathcal{L} = \frac{ee_u}{\Lambda} \bar{t} \sigma_{\mu\nu} q^{\nu} \kappa_{\gamma} u A^{\mu}$

couplings to c and Z are neglected

In SM, events with isolated lepton are mainly due to W production (~ 1.2 pb).

HERA experiments are sensitive to u (valence quark) and anomalous γ exchange

H1 Anomalous Single Top Search

Result published: DESY-09-050

Full data sample collected by H1 at HERA: integrated luminosity $474pb^{-1}$

Search for anomalous top production looking at **muon**, **electron** and **hadron** channels

Multivariate discriminant method based on a neural network used to differentiate top quark production from SM background

(4 同) トイヨト イヨト

Leptonic Channel - H1

Leptonic Channel (based on the isolated lepton analysis arXiv:0901.0488)

Leptons isolated from jets and other tracks in the event and:

 $p_{T,miss} > 12 \, GeV$

 p_T of the leptons > 10 GeV

polar angle $0.1 < \theta < 2.4$ rad

・ロト ・日ト ・ヨト・

The data are in overall agreement with the SM pred. A slight excess of data in the signal region is visible.

Hadronic channel - H1

Hadronic Channel

Events with at least three jets in $-0.5 < \eta < 2.5$

Jets ordered in transverse momenta: $p_{T,1} > 40 \text{ GeV}, p_{T,2} >$ $30 \text{ GeV}, p_{T,3} > 15 \text{ GeV}$

Cut on the scalar sum of the jet transverse momenta $\sum p_{T,jet} > 110 \text{ GeV}$

Good overall agreement between data and SM prediction.

H1 Limit Setting

No significant excess is seen \Rightarrow limits on the single top production have been set

H1 Search for Single Top Production $e^{\pm}p$, 474pb $^{-1}$								
	Upper Limit at 95% CL							
Channel	$\sigma(ep \rightarrow tX, \sqrt{V})$	$\sqrt{s} = 319 GeV$	$\kappa_{tu\gamma}$	$\mathcal{B}(t \rightarrow u\gamma)$				
	Observed[pb]	Expected[pb]		[%]				
Electron	0.40	0.24	0.21 - 0.23	0.82 - 1.02				
Muon	0.30	0.22	0.18 - 0.20	0.61 - 0.76				
Electron+Muon	0.27	0.15	0.17 - 0.19	0.55 - 0.69				
Hadronic	0.42	0.27	0.21 - 0.24	0.86 - 1.07				
Combined	0.25	0.12	0.16 - <mark>0.18</mark>	0.51 - <mark>0.64</mark>				

The limits are larger than the expected ones evaluated with a toy model assuming a pure SM scenario, since a slight excess of events, compatible with the signal, have been observed.

H1 has included NLO corrections to the signal cross section in the coupling limit evaluation.

ZEUS Anomalous Single Top Search

Muon Channel:

 $|Z_{vtx}| < 30 \ cm$ $E - p_Z < 70 \ GeV$ $p_{T,miss} > 10 \ GeV$ Muon Candidate:

 $p_T > 8 \; GeV$ track from primary vertex and isolated from other tracks in the event

Electron Channel

 $|Z_{vtx}| < 30 \ cm$ $5 < E - p_Z < 50 \ GeV$ $p_{T,miss} > 12 \ GeV$ Electron Candidate: $p_T > 10 \ GeV$ track from primary vertex and
isolated from other tracks in the
event $0.1 < acoplanarity < \pi - 0.1 \ rad$

Muonic Channel - ZEUS

Acceptable agreement between data MonteCarlo.

Main background: di-muon production.

W contribution visible at high transverse mass M_T .

Electronic Channel - ZEUS

(人間) トイヨト イヨト

Final Cuts - ZEUS

For the final selection a cut on $p_{T,had} > 40 \text{ GeV}$ has been required

< D) < D)

ZEUS Limit Setting

Single Top Selection

	Nobs	N _{pred}	W[%]	Eff. \times Br.
Muon Channel 04-05 <i>e⁻p</i>	1	$1.5{\pm}0.4$	47	0.026
Muon Channel 06-07 e^+p	1	$1.4{\pm}0.4$	50	0.026
Electron Channel 04-05 e ⁻ p	0	$2.1{\pm}0.6$	38	0.033
Electron Channel 06-07 e^+p	0	$0.9\ \pm 0.3$	78	0.033

These results have been converted into limit on the signal cross section using a Bayesian approach. Assuming a constant prior on the signal cross section. The following upper limit on the cross section has been obtained:

 $\sigma < 0.23 \, pb \, (95\% \, C.L.)$

The limit on the cross section has been converted into a limit on the coupling $\kappa_{tu\gamma}$

$$\kappa_{tu\gamma} < 0.17 (0.16 - 0.18, M_{top} = 171.2 \pm 2.1 GeV)$$

The result has been combined with the HERA I limit (using only samples at $\sqrt{s} = 318 \text{ GeV}$) for a total integrated luminosity of 359 pb^{-1} :

$$\sigma < 0.13 \ pb, \ \kappa_{tu\gamma} < 0.13 \ (Br(t
ightarrow u - \gamma) < 0.34\%)$$

Comparison of HERA Limits with Other Experiments

ZEUS has produced preliminary result with HERAII statistics ($\sigma < 0.23 \text{ pb}$; $\kappa_{tu\gamma} < 0.17$) and combined it with HERAI result (PLB 559 (2003) 153) ($\sigma < 0.13 \text{ pb}$; $\kappa_{tu\gamma} < 0.13$)

The study on single top production is a good example of complementarity between different colliders

For the process involving a u - top transition mediated by photon, HERA constraints are the best to date

<ロト <回ト < 回ト < 回ト

ZEUS has produced preliminary result with HERAII statistics ($\sigma < 0.23 \text{ pb}$; $\kappa_{tu\gamma} < 0.17$) and combined it with HERAI result (PLB 559 (2003) 153) ($\sigma < 0.13 \text{ pb}$; $\kappa_{tu\gamma} < 0.13$)

The study on single top production is a good example of complementarity between different colliders

For the process involving a u - top transition mediated by photon, HERA constraints are the best to date

・ロト ・四ト ・ヨト・

ZEUS has produced preliminary result with HERAII statistics ($\sigma < 0.23 \text{ pb}$; $\kappa_{tu\gamma} < 0.17$) and combined it with HERAI result (PLB 559 (2003) 153) ($\sigma < 0.13 \text{ pb}$; $\kappa_{tu\gamma} < 0.13$)

The study on single top production is a good example of complementarity between different colliders

For the process involving a u - top transition mediated by photon, HERA constraints are the best to date

イロト イヨト イヨト イヨト

ZEUS has produced preliminary result with HERAII statistics ($\sigma < 0.23 \text{ pb}$; $\kappa_{tu\gamma} < 0.17$) and combined it with HERAI result (PLB 559 (2003) 153) ($\sigma < 0.13 \text{ pb}$; $\kappa_{tu\gamma} < 0.13$)

The study on single top production is a good example of complementarity between different colliders

For the process involving a u - top transition mediated by photon, HERA constraints are the best to date

イロト イヨト イヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

æ

Cuts optimization \Rightarrow minimizing the cross section upper limit (σ_{lim}) assuming a pure SM scenario:

$$\langle \sigma_{lim} \rangle = rac{\langle N_{sig}^{lim} \rangle}{\epsilon \mathcal{L}}$$

where ϵ is the signal efficiency, \mathcal{L} is the integrated luminosity and $\langle N_{sig}^{lim} \rangle$ is the limit on the number of signal events averaged over the possible observed events;

$$\langle N_{sig}^{lim} \rangle = \sum_{N_{obs}=0}^{\infty} P(N_{obs}, N_{bkg}) \cdot N_{sig}^{lim}(N_{obs}, N_{bkg}),$$

 $N_{sig}^{lim}(N_{obs}, N_{bkg})$ being the limit on the number of the signal events at 95% C.L.

・ロト ・回ト ・ヨト ・ヨト

Acoplanarity is the angle in the transverse plane between the lepton and the vector balancing the hadronic p_T

< ロト < 回 > < 回 > < 三 > < 三</p>