QCD fits & Factorisation tests in diffraction at HERA

A next-to-leading-order QCD analysis of diffractive processes measured by the ZEUS experiment

DIS 2009

Diffraction and Vector Mesons parallel session

April 2009, Madrid

Wojciech Słomiński (Jagellonian University, ZEUS)

On behalf of the ZEUS collaboration

Fitting & testing procedure

• A systematic investigation

- NLO QCD fit to the inclusive DIS data
- comparison and fit to dijets in DIS
- comparison to dijets in PHP

Massive quarks treatment

- VFNS vs. FFNS
- arguments for GM-VFNS

• Fixing gluons

Inclusive diffractive DIS

expressed in terms of diffractive structure functions

$$\sigma_{\mathbf{r}}^{D(3)}(\beta, Q^2, x_{I\!\!P}) = F_2^{D(3)}(\beta, Q^2, x_{I\!\!P}) - \frac{y^2}{1 + (1 - y)^2} F_{\mathbf{L}}^{D(3)}(\beta, Q^2, x_{I\!\!P})$$

A model for diffractive $F_{2/l}$

Regge factorisation assumption

 $F_{2/L}^{D(4)}(\beta, Q^2, x_{I\!\!P}, t) = f_{I\!\!P}(x_{I\!\!P}, t) F_{2/L}^{I\!\!P}(\beta, Q^2) + f_{I\!\!R}(x_{I\!\!P}, t) F_{2/L}^{I\!\!R}(\beta, Q^2)$

D

This assumption works for the inclusive DIS with

• Regge-type flux
$$f(x_{I\!\!P},t) = \frac{A e^{Bt}}{x_{I\!\!P}^{2\alpha(t)-1}}$$
 with $\alpha(t) = \alpha(0) + \alpha' t$

- free $F_{2/L}^{I\!\!P}(\beta, Q^2)$ $F_{2/L}^{I\!\!R}(\beta, Q^2) \propto F_{2/L}^{\pi}(\beta, Q^2)$ (GRV)

see Marta Ruspa talk

Can QCD + DGLAP describe
$$F_{2/L}^{I\!\!P}(\beta, Q^2)$$
?

Factorisation & heavy guarks

- $F_{2/1}$ or any other cross section σ for *N* massless flavours
 - collinear divergencies caused by massless quarks factorised and absorbed into non-perturbative PDFs

$$\sigma(Q^2,...) = \sum_{k} f_k^{(N)}(Q^2) \otimes \sigma_k(...)$$

nb. in diffraction

$$f_k^{(N)}(Q^2) \to f_k^{D(N)}(Q^2, x_{IP}, t)$$

Diffractive PDFs

+ 1 heavy flavour (massive quark) in FFNS

heavy flavour (massive quark) in FFNS

$$\sigma(Q^2,...) = \sum_k f_k^{(N)}(Q^2) \otimes \sigma_k^{FF}(m^2/Q^2,...)$$
still *N* partons, heavy flavour in final state only
no extra collinear divergencies
new types of terms
• m^2/Q^2 — important at low Q^2
• $\log(m^2/Q^2)$ — large at high Q^2

- still *N* partons, heavy flavour in final state only
- no extra collinear divergencies
- new types of terms
 - m^2/Q^2 important at low Q^2
 - $\log(m^2/Q^2)$ large at high Q^2

Heavy quarks treatment in VFNS

- $m^2/Q^2 \rightarrow 0$ massless or infinite Q² limit Fecover massiess limit at NHT
 - large logs must be resummed
 - − → N+1 massless flavours

$$\sigma(Q^2,\ldots) = \sum_k f_k^{(N+1)}(Q^2) \otimes \sigma_k(\ldots)$$

- ZM(zero mass)-VFNS ۲
 - use (N+1) massless formula at $Q^2 > m^2$
- **GM(general mass)-VFNS** ۲
 - $\log(m^2/Q^2)$ resummed \rightarrow heavy quark PDF
 - proper behaviour at $Q^2 \sim m^2$

$$\sigma(Q^{2},...) = \sum_{k} f_{k}^{(N+1)}(Q^{2}) \otimes \sigma_{k}^{VF}(m^{2}/Q^{2},...)$$

non-unique — Thorne-Roberts scheme used (as in ZEUS QCD fits)

FN scheme choice

- GM-VFNS is most general → best choice
- Inclusive DIS
 - FFNS and VFNS formulae available
 - both schemes give good description of the data

Dijets production

- available formulae (computer codes) use massless quarks
- "closer" to VFNS than FFNS
- VFNS provides heavy quark PDFs
 - OK at high μ
 - still threshold effects missing at μ close to m_h

Diffractive PDFs parametrization

Regge factorisation assumption

Pomeron PDFs parametrized at some initial Q_0^2

for all flavours $q = \overline{q}$ \Rightarrow quark singlet (total sea) $f_S^{IP} = \sum f_{q+}^{IP} = 2\sum f_q^{IP}$

symmetric light quarks assumed: d = u = s

 $zf_k^{IP}(z, Q_0^2) = A_k z^{B_k} (1-z)^{C_k}$ k = g,S 6 parameters × regularizing factor $exp(-\frac{0.001}{1-z})$ to allow for any C_k

Free flux parameters: $\alpha_P(0), \alpha_R(0), A_R$ 3 parameters

9 parameters in total

Models for gluons

Gluons expected to be poorly constrained by the inclusive data.

Consider two cases of the gluon parametrization

$$zf_{g}^{IP}(z,Q_{0}^{2}) = A_{g} z^{B_{g}} (1-z)^{C_{g}}$$

"Standard": Fit S with B_g , C_g fitted "Constant": Fit C with $B_g = C_g = 0$ (as in H1-2006B)

Both models provide equally good data description but very different gluons

LRG data well described – low Q²

ZEUS

LRG data well described – high Q²

 ZEUS LRG 99-00 — ZEUS (prel.) DPDF S incl 						
(e) 0.06 0 0.04	β = 0.070	β = 0.151	β = 0.319	β = 0.545	β = 0.769	$Q^2 = c$
× ^e 0.02		· ••••	· · · · · · · ·			30 GeV ²
0.06	β = 0.091	- β = 0.191 -	β = 0.385	β = 0.615	- β = 0.816 -	
0.04	.		- * **	. Wood		40 GeV ²
0.06	β = 0.111	- β = 0.228 -	β = 0.439	β = 0.667	β = 0.847	
0.04 0.02		. .	****	* *	e	50 GeV ²
0.06	β = 0.140	- β = 0.278 -	β = 0.504	β = 0.722	β = 0.878	
0.04	2	••	744.	- Saaa		65 GeV ²
0.06	β = 0.175	- β = 0.335 -	β = 0.570	β = 0.773	β = 0.904	
0.04	-	•••	***	. Then		85 GeV ²
0.06	β = 0.216	- β = 0.394 -	β = 0.632	β = 0.815	β = 0.924	
0.04	•	. 🍝 .	•••			110 GeV ²
0.06	β = 0.259	- β = 0.453 -	β=0.686	β = 0.848	β = 0.940	
0.04		•		- -		140 GeV ²
0.06	β = 0.316	β = 0.523 -	β = 0.743	β = 0.881	β = 0.954	
0.04 0.02		. 🔸 .	**			185 GeV ²
0.06	β = 0.389	β = 0.601 ⁻	β = 0.799	β = 0.911	β = 0.966	
0.04 0.02	•					255 GeV ²
L	10 ⁻³ 10 ⁻² 10 ⁻¹	10 ⁻³ 10 ⁻² 10 ⁻¹ X _{IP}	_			

ZEUS

 $x_{IP} \sigma_r^{D(3)} (\beta, Q^2, x_{IP})$

2009-04-27

LPS data well described

 $x_{IP} \sigma_r^{D(3)} (\beta, Q^2, x_{IP})$

DPDFs from the inclusive fits

2009-04-27

Dijets in diffractive DIS & PHP

- Dijet production is directly sensitive to gluons
 - photon-gluon fusion at LO
- DiJets in DIS (large Q²) (J.C. Collins 1998) factorisation holds in pQCD
 - compare to predictions based on inclusive DIS fits
 - use in incl+dijets fit
- DiJets in PHP (Q² → 0) factorisation assumed for the resolved photon contribution

$$\boldsymbol{\sigma}(E_{\perp}^{2},\ldots) = \sum_{j,k} f_{j}^{IP}(E_{\perp}^{2}) \otimes \boldsymbol{\sigma}_{jk}(\ldots) \otimes f_{k}^{\gamma}(E_{\perp}^{2})$$

- strong suppression observed in pp collisions (CDF/Tevatron)
- compare to predictions based on incl+dijets fit

Dijets in DIS sensitive to gluons

Fit S fails at z > 0.4

Fit C works surprisingly well

NLO QCD predictions from DISENT (*Catani, Seymour*) vs. ZEUS data EPJ C52 (2007) 813

NLOJET++ (Nagy) results agree within 5%

Inclusive + DIS dijets fit

ZEUS

Fit S incl+dijets

good data description

DPDFs from the inclusive+dijets fit

Predictions for photoproduction of dijets vs. x_{γ}

ZEUS

NLO QCD predictions obtained *assuming factorisation* Computer code by Frixione & Ridolfi, γ PDFs: GRV-HO

Predictions for photoproduction of dijets vs. E_T

ZEUS ZEUS $d\sigma/dE_T^{jet1}$ (pb/GeV) el. to ZEUS (prel.) DPDF S incl+dijets ZEUS diff dijet yp 99-00 ZEUS diff dijet yp 99-00 2 prel.) DPDF S incl+dijets corr. uncertainty 60 ZEUS (prel.) DPDF S incl+dijets 1.5 ------ H1 Fit 2007 Jets × 0.81 40 0.5 10 12 14 8 E_{T}^{jet1} (GeV) 20 Good data description No evidence for suppression 0 10 12 8 14 E^{jet1}_T (GeV)

NLO QCD predictions obtained *assuming factorisation* Computer code by Frixione & Ridolfi

Summary

- A systematic NLO analysis of the ZEUS diffractive data performed
- Successful GM-VFNS (Thorne-Roberts) fits to
 - inclusive DIS only
 - inclusive DIS + DIS-dijets
- NLO predictions for dijet production, using new DPDFs agree very well with the data
- No evidence for suppression in photoproduction