

B quark production at CM\$

Jérémy Andrea, IPHC/Université de Strasbourg. On behalf of the CMS collaboration

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

UNIVERSITÉ DE STRASBOURG

27/04/2009 1/15

Introduction

- Measurement of the b production at LHC using the CMS detector.
- Test of the next-to-leading-order (NLO) QCD prediction at high energy collisions (underestimated at Tevatron).
- Dominant b-quark production mode at LHC: bb pair production (QCD). Other source of b quarks: top quark (t→Wb) or possible new particles.
- B-tagging algorithms (identify b-jets): can be used to select bb events. It is also possible to estimate b-tagging performance from bb events.
- bb correlations: test high order processes,
 - For low order processes : $b\overline{b}$ back to back ($\Delta \varphi(b\overline{b}) \approx \pi$), balanced p_T ,
 - For high order processes : spread $\Delta \varphi(b\overline{b})$ distribution, unbalanced p_T .
- Outline:
 - B-production mechanisms,
 - B-tagging algorithms,
 - Measurement of b production using b-tagging (14 TeV),
 - Measurement of $b\overline{b}$ angular correlations without b-tagging (10 TeV).

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

B production

- Three different QCD mechanisms for bb production:
 - 1. Flavour Creation: gluons fusion and qq annihilation (low order diagrams)
 - 2. Flavour Excitation: $b\bar{b}$ pair from the quarks/gluons see with one b being part of the hard process (produce b quarks with asymmetric p_T),
 - 3. Gluon Splitting: $g \rightarrow b\overline{b}$ in initial or final states, can lead to small value of $\Delta \phi$.
- Expected bb production rate (from PYTHIA, LO, 10 TeV) ≈ 438 µb.
- Measure $b\overline{b}$ production as a function of b quarks p_T and azimuthal angle between the two b quarks.
 - At Tevatron, the shapes of transverse momentum, angular distributions and azimuthal correlations are well described by perturbative QCD but the observed cross sections are larger than QCD predictions.

B-tagging at CM\$

Properties of b hadrons:

- Large life time (\approx ps, c $\tau \approx 500 \ \mu$ m),
- Secondary vertex (SV),
- Semi-leptonic decay Br(b→IX)≈20%, Br(b→cX→IX')≈20%,
- "high" masses, B hadrons take away about 70% of the b quark energy.
- The SV can be shown by the impact parameter (IP) of tracks with respect to the jet axis.
- Sign of the IP: positive if the hadron decays "downstream" or negative it decays "upstream" (resolution on IP/ σ) w.r.t. the primary vertex (sign of cos(IP-jet)). CMS PAS BTV-07-002

- To take into account resolution effects we use the impact parameter significance IP/σ .
- IP/ σ of tracks are:
 - Almost symmetrical for light quark jets and gluon jets (udsg) and centred around 0,

DU

- Asymmetric for b(c) jets with a larger fraction of tracks with high positive impact parameters.
- Track Counting algorithms: count the number of tracks with an IP/σ > cut value in a jet.

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

27/04/2009

ie

B-tagging at CM\$ (2)

- Combined Secondary Vertex algorithm,
- Based on the secondary vertex reconstruction of the b-hadrons' weak decay,
- Combined topological and kinematical variables into a discriminator using a likelihood ratio method:
 - Invariant mass of tracks from SV, track multiplicity, distance between PV and SV, rapidity *y* w.r.t. the jet axis, IP/σ of the first tracks

- Three different cases :
- 1. "RecoVertex" => A SV is reconstructed,
- "PseudoVertex" => no SV reconstructed but there is at least 2 tracks with IP/σ>2,
- 3. "NoVertex" => other cases

IVERSITÉ DE STRASBOURG

B-tagging at CM\$ (3)

- Performance curves for QCD events with 50 < $p_T < 80$ GeV/c and for jets with $|\eta| < 1.4$.
- Probability to tag a non b-jet as a b-jet (mistag rate) vs b-tagging efficiency.
- For c jets, light quarks jets and gluon jets.
- For a mistag rate of light quark jets (udsg) of 1%, the b-tagging efficiency is about 60% for a perfect detector.

B-tagging performance from data

- B-tagging efficiency (Track Counting).
- From Top quark : selecting a pure sample of tt event and counting the number of b-tagged jets.
- From a "muon in jet" sample (QCD): Fit on the p_T of the muon relative to jet axis p_T^{rel} ,
- The system 8 ("muon in jet" sample QCD):
 - use 3 different identification criteria: the studied algorithm, a cut on the p_T^{rel} of the muon, an additional tagged jet b in the event.
 - Construct an equation system of 8 equations and 8 unknowns => estimate the b-tagging efficiency.

System 8 : For L=100pb⁻¹, mistag \approx 1%, uncertainty \approx 8.6%

Mistag rate

- IP/o distribution is almost symmetric for light quarks and gluon jets.
- Negative tagger which uses only tracks with IP/ σ <0 \Rightarrow it gives an estimate of the mistag rate.
- Correct by a Monte-Carlo factor (sources of asymmetries in IP/ σ for light jets like V⁰, $\gamma \rightarrow ee$).

For L=100pb⁻¹, mistag \approx 1%, uncertainty \approx 8.0%

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

ERSITÉ DE STRASBOURG

27/04/2009

B production at CMS

- Inclusive b production measurement for 14 TeV collisions and high luminosity.
- Analysis strategy: select events with at least one btagged jet and at least one muon. p_T spectrum is determined by looking at the most energetic b-jet per event.
- Trigger selection:
 - Level 1 trigger "single muon" with $p_T > 14$ GeV/c,
 - High Level Trigger: "muon+b-jet" => 1 non-isolated muon ($p_T > 19$ GeV/c) + a b-tagging requirement on jet ($E_T > 50$ GeV and $|\eta| < 2.4$, Track Counting from pixel-only tracks).
- Event selection:
 - At least 1 b-tagged jet in the event (using the Combined SV algorithms presented previously).
 - p_{T} > 50 GeV/c and |η| < 2.4
 - Only the most energetic jet is considered, measurement of dσ/dp_T, dσ/dη...
- B-tagging efficiency is about 65% in the barrel and 10% less in the end-caps.

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

UNIVERSITÉ DE STRASBOURG

27/04/2009 8/15

B production at CM\$ (2)

- Additional requirement: the b jets candidates associated with the reconstructed muon (b-tagged jet is required to be the closest jet to the muon).
- Total selection efficiency \approx 5% (\approx 25% when taking into account semi-leptonic branching ratio of b and c).
- p_T of the muon relative to the closest jet axis:
 - Shapes are different for b, c and uds jets (discriminating power),
 - Can be used to fit the data.

 Example of fit using the expected shapes of the muon p_T relative to jet axis for b, c and light quarks jets.

230 <p<sub>T< 300 GeV/c</p<sub>	Monte-Carlo truth	Fit results
bb	5250	5222±501
cc	2338	2050±728
uds	1740	1778±341

- b purity changes from 70% to 55%.
- B-hadron p_T range accessible should goes up to 1.5 TeV/c.
- tt contamination < 1%.

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

B production at LHC (4)

- Systematic uncertainties for an integrated luminosity of 10 fb⁻¹ at 14 TeV:
 - Dominated by JES uncertainty,
 - Fragmentation of b quarks,
 - Monte-Carlo modelling,
 - B-tagging, Luminosity, Trigger efficiency etc...

Source	uncertainty, %
jet energy scale	12
event selection	6
B tagging	5
luminosity	5
trigger	3
muon Br	2.6
misalignment	2
muon efficiency	1
$t\overline{t}$ background	0.7
fragmentation	9
total	18

- Estimated statistical (triangles), Systematic (squares) and total (dots) uncertainty of the cross section measurement as a function of the b-tagged jet p_T.
 - For a bjet of 100 GeV/c, the total expected uncertainty is smaller than 20%.

CMS PAS BPH-08-004

- Measure of the azimuthal correlations of $b\overline{b}$ production ($d\sigma/d\Delta\phi$) for a luminosity of 50 pb⁻¹, 10 TeV collisions, without b-tagging (in the case where b-tagging does not perform well).
- Channel of interest: $b\overline{b} \rightarrow (J/\psi X)(\mu X')$ where the J/ ψ particle decays into a pair of ٠ muons.
- Analysis strategy:
 - one b is tagged by reconstructing a J/ψ particle from 2 opposite sign muons and ask for an additional muon compatible with a semi-leptonic decay of the second b,
 - Measure the yield in each $\Delta \phi$ bins by means of an unbinned likelihood,
 - Correct for resolution effects on the $\Delta \phi$ distribution using an unfolding procedure.
- Monte-Carlo samples :
 - Inclusive $pp \rightarrow bb \rightarrow J/\psi X$ produced by PYTHIA + EvtGen (for b hadrons generation),
 - Prompt J/ ψ from primary vertex,
 - Minimum bias with at least one generated muon ($pp \rightarrow \mu X$).

11/15

bb correlations (2)

- Events selection:
 - Trigger requirements : 2 HLT muons with $p_T > 3$ GeV/c $(\epsilon_{trig} \approx 22\%)$,
 - From 2 reconstructed "tracker muons" (tracker tracks+some matching requirements with muon segments) the J/ψ vertex has to be reconstructed,
 - A third muon with $p_T > 3$ GeV/c and $|\eta| < 2.4$ is required.
 - Additional quality cuts on the 3^{rd} muon (>10 silicon tracker hits + track fit χ^2 /ndf).
- After the selection, the effective cross section is 145 pb.

$\Delta \phi$ (J/ $\psi\text{-}\mu\text{)}$ after the selection

 $\mu^+\mu^-$ invariant mass distribution for signal events, events with a fake J/ ψ , a real J/ ψ but a fake 3rd muon or a real J/ ψ from prompt interaction.

Irreducible background from $B_c \rightarrow J/\psi \mu X$.

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

UNIVERSITÉ DE STRASBOURG

27/04/2009 12/15

bb correlations (3)

- Signal extraction:
 - For the different $\Delta \phi$ bins => unbinned maximum-likelihood fit from $M_{\mu\mu}$, the transverse flight distance and the impact parameter of the 3rd muon.
 - PDFs for signal and backgrounds are extracted from Monte-Carlo sample.
 - Extract amplitudes for signal and backgrounds from the fit.
- Signal
 CMS Preliminary

 100
 Prompt J/Ψ

 100
 Signal

 100
 3.1
 3.2
 3.3
 3.4

 J/Ψ Invariant Mass [GeV/c²]

• Fit result for 13pb⁻¹.

- $\Delta \phi$ resolution is of the same order than bin size,
- an unfolding procedure is applied to disentangle resolution effects in the $\Delta \phi$ distribution.
 - Comparison between the generated and unfolded $\Delta \phi$ distributions.

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

UNIVERSITÉ DE STRASBOURG

27/04/2009 13/15

bb correlations (4)

- Sources of systematic uncertainties, estimated for each $\Delta \phi$ bins:
 - the fraction of muons produced by the cascades decay $b \rightarrow cX \rightarrow \mu X'$,
 - Bottom hadron lifetimes are correlated to the IP of their decay products: uncertainty on the fraction of bottom quark fragmenting in the different bottom hadrons,
 - Uncertainty on the PDF shapes,
 - J/ψ polarization and alignment effects,
 - Stat. of the Monte-Carlo and background from $B_c \rightarrow J/\psi \mu X$.
- Final results:
 - The final cross section is calculated according to the formula:

$$\frac{d\sigma}{d\Delta\varphi} = \frac{N_{fit}}{L \cdot \varepsilon_{trg} \cdot \varepsilon_{reco}}$$

- Depending on the particular Δφ bin, the differential cross-section uncertainty is between 15 and 25% for an integrated luminosity of 50 pb⁻¹.
- An uncertainty of 10% is expected for the integrated total bbX cross section.

STRASBOURG

Jérémy Andrea IPHC/UDS (Strasbourg) DIS09

- Studying b production at LHC will allow to test QCD predictions.
- Large numbers of analysis will depend on the bb production rate :
 - B-tagging efficiency estimated from data, Top physics, Higgs physics, search for new Physics,
- Already with <u>early data</u> (few pb⁻¹ at 10 TeV collisions), CMS should be able to measure differential bb cross section (Δφ) with a good precision (without b-tagging).
- With higher luminosities (few fb⁻¹ at 14 TeV collisions) and with the use of b-tagging, CMS should be able to measure differential bb cross section (p_T) up to 1.5 TeV.
- CMS commissioning is well ongoing with cosmic data. We are waiting for collisions...

