Azimuthal decorrelation of dijets in QCD hard processes

A. Banfi¹ M. Dasgupta² Y. Delenda³

¹Cavendish Laboratory University of Cambridge

²School of Physics and Astronomy University of Manchester

³Départment de Physique Université de Batna, Algeria

Tuesday, 28 April 2009/ DIS 2009, Madrid

Hard events in QCD and jets

Jet events ⇔ signals for a hard scattering in QCD

Cluster final state particles into jets \Rightarrow Direct access to partonic cross sections

$$d\sigma_{PQ \rightarrow j_1 j_2} = d\sigma_{PQ \rightarrow cd} + \mathcal{O}(1/Q^p)$$

Dijet azimuthal decorrelations as a QCD probe

Dijet azimuthal decorrelations are directly sensitive to QCD radiation

- Test fixed order QCD predictions and tune Monte Carlo event generators
- Explore new features of QCD dynamics (BFKL effects, unintegrated pdfs)

[Hautmann Jung 08]

Dijet azimuthal decorrelations as a QCD probe

Dijet azimuthal decorrelations are directly sensitive to QCD radiation

- Test fixed order QCD predictions and tune Monte Carlo event generators
- Explore new features of QCD dynamics (BFKL effects, unintegrated pdfs)

[Hautmann Jung 08]

Dijet azimuthal decorrelations as a QCD probe

Dijet azimuthal decorrelations are directly sensitive to QCD radiation

- Test fixed order QCD predictions and tune Monte Carlo event generators
- Explore new features of QCD dynamics (BFKL effects, unintegrated pdfs)

[Hautmann Jung 08]

Dijet azimuthal correlations: beyond fi xed order

Back-to-back region: sensitivity to multiple soft-collinear emissions

$$\Delta \phi \simeq \pi - rac{|ec{k}_t imes ec{
ho}_{t,1}|}{
ho_{t,1}^2}$$

Small-x regime: large phase space for multiple initial-state hard gluons

$$\Delta \phi = \frac{2}{5}\pi \lesssim 1$$

Complementary theoretical approaches

All-order resummation of multiple emission effects to dijet $\Delta \phi$ distribution

Soft-collinear resummation

- Flattening of the distribution (random walk) around $\Delta \phi = \pi$
- Hard emission effects only at fixed order
- Described by HERWIG and PYTHIA at Tevatron (large x) but not at HERA (small x)
- Analytical calculations at NLL+NLO

Small-x resummation

- Unintegrated parton distributions around $\Delta \phi = \pi$
- Multiple hard emissions ordered in rapidity via BFKL or CCFM
- Described at HERA by CASCADE, no extension to hadron-hadron collision yet
- No analytical control over MC simulation

Extrapolating MC results to the LHC (small x) may require combination of multiple soft-collinear and hard gluon effects

Motivation for soft-collinear gluon resummation

- NLO calculations describe the $\Delta \phi$ distribution except for $\Delta \phi \simeq \pi$, even at small $x \Rightarrow$ few extra hard gluons are enough? [Nagy Trocsanyi 01]
- ② $\Delta \phi = \pi$ from secondary gluon transverse momentum cancellation \Rightarrow no need for intrinsic k_t ?

Observable behaviour with a single soft-collinear emission

Radiation outside the jets $\Leftrightarrow p_{jet,1} = p_1$ and $p_{jet,2} = p_2$

$$\Delta \phi \simeq \pi - rac{k_t}{p_{t,1}} |\sin \phi|$$

Radiation inside one of the two jets $\Leftrightarrow p_{jet,1} = p_1$ but $p_{jet,2} \neq p_2$

In a vectorial recombination

$$\Delta \phi = \pi$$

problems with globalness
[Dasgupta Salam 01]

In a p_t -weighted scheme extra in-jet contribution \Rightarrow observable is global

$$\phi_{\text{jet},2} = \frac{p_{t,2}\phi_2 + k_t\phi}{p_{t,2} + k_t} \quad \Rightarrow \quad \Delta\phi = \pi - \frac{k_t}{p_{t,1}} |\sin\phi - (\pi - \phi)|$$

Multiple soft-collinear effects

After multiple soft-collinear emissions $\{k_1, \ldots, k_n\}$ and $p_t \simeq p_{t,1} \simeq p_{t,2}$

$$|\pi - \Delta \phi| \simeq \left| \sum_{i \notin ext{jets}} rac{k_{t,i}}{
ho_t} \sin \phi_i - \sum_{i \in ext{jet1}} rac{k_{t,i}}{
ho_t} [\phi_i - \sin \phi_i] - \sum_{i \in ext{jet2}} rac{k_{t,i}}{
ho_t} [(\pi - \phi_i) - \sin \phi_i]
ight|$$

Fourier transform for $\Sigma(\Delta) = \text{Prob}(|\pi - \Delta\phi| < \Delta)$ (here $\bar{b} = b \ e^{-\gamma_E}$)

$$\Sigma(\Delta) = \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b\Delta) \cdot \left[\prod_{a=1}^{n_{\rm in}} \frac{f_a(\mu_F/\bar{b})}{f_a(\mu_F)} e^{-R_{\rm in}^a(\bar{b})} \right] \cdot \left[\prod_{a=n_{\rm in}+1}^{n_{\rm out}} e^{-R_{\rm out}^a(\bar{b})} \right] \cdot S(\bar{b})$$

This picture is valid at NLL accuracy \Rightarrow resum $\alpha_s^n \ln^{n+1} b$ and $\alpha_s^n \ln^n b$ [Banfi Delenda Dasgupta 08]

Main features of soft-collinear resummation

Radiation from incoming legs ($\ell = 1, n_{in}$) \Leftrightarrow inclusive \vec{k}_t distribution

$$\Delta_{\rm in}(k) = rac{k_t^{(\ell)}}{
ho_t} |\sin\phi^{(\ell)}| \quad \Rightarrow \quad R_{\rm in}(ar{b}) \simeq C_{\rm in} rac{lpha_{
m s}}{\pi} \ln^2 ar{b}$$

Radiation from outgoing legs $(\ell = n_{in} + 1, n_{out}) \Leftrightarrow$ new inclusive distribution

$$\Delta_{\mathrm{out}}(k) = \frac{2}{3} \left(\frac{E_{\ell}}{\rho_t}\right)^2 \frac{k_t^{(\ell)}}{\rho_t} e^{-2\eta^{(\ell)}} |\sin^3\phi^{(\ell)}| \Rightarrow R_{\mathrm{out}}(\bar{b}) \simeq \frac{C_{\mathrm{out}}}{3} \frac{\alpha_{\mathrm{s}}}{\pi} \ln^2 \bar{b}$$

Prescriptions for standard resummation

$$\Sigma(\Delta) = \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b\Delta) \cdot \left[\prod_{a=1}^{n_{\rm in}} \frac{f_a(\mu_F/\bar{b})}{f_a(\mu_F)} e^{-R_{\rm in}^a(\bar{b})} \right] \cdot \left[\prod_{a=1}^{n_{\rm out}} e^{-R_{\rm out}^a(\bar{b})} \right] \cdot S(\bar{b})$$

Large-b region

- $R_{\rm in}(\bar{b})$, $R_{\rm out}(\bar{b})$, $S(\bar{b})$ contain integrals of $\alpha_s(k_t)$ up to $k_t \sim p_t/\bar{b}$, hitting the Landau pole
 - \Rightarrow Cut all b integrals at at $\bar{b} = p_t/\Lambda_{\rm QCD}$
- The factorization scale μ_F/\bar{b} can reach 1GeV $\sim R_p^{-1}$: can we still trust collinear factorization?
 - ⇒ Freeze pdf's below 1 GeV

Small-b region

• b = 0 corresponds to total cross section, $R_{in}(0) = R_{out}(0) = \ln S(0) = 0$ ⇒ Force R_{in} , R_{out} , $\ln S$ to vanish for $\bar{b} < 1$

Other prescriptions are possible, having all a certain degree of arbitrariness

Azimuthal decorrelation in DIS

Two jets with $ho_{t, ext{jet}}^{ ext{HCM}} > 5 ext{GeV}$ and $-1 < \eta_{ ext{jet}}^{ ext{lab}} < 2.5$, with $\mu_F^2 = \mu_R^2 = \left< (
ho_{t, ext{jet}}^{ ext{HCM}})^2 \right>$

Full phenomenological analysis requires

- Evaluation of resummation uncertainties (prescriptions, impact of NNLL)
- ② Matching to fixed-order for full theoretical uncertainties (μ_R , μ_F variation)

Varying resummation prescriptions

- Small impact from Landau pole $(\bar{b} \to p_t/\Lambda_{\rm QCD})$ and unitarity $(b \to 0)$
- Huge effect from the region $\bar{b} > \mu_F R_p \Rightarrow \text{intrinsic } k_t$ needed?

Matching to fi xed order

Consider the all-order azimuthal decorrelation in DIS for an incoming gluon

$$\Sigma_g(\Delta) = \frac{2}{\pi} \int_0^\infty \frac{db}{b} \sin(b\Delta) \cdot C^{(g)}(\alpha_s) \cdot \left[\frac{g(\mu_F/\bar{b})}{g(\mu_F)} e^{-R_{\text{in}}^{(g)}(\bar{b})} \right] \cdot e^{-2R_{\text{out}}^{(q)}(\bar{b})} \cdot S_{qqg}(\bar{b})$$

The first order coefficient C_1 gives a contribution $\alpha_s^{2n} \ln^{2n-2} b$, same size as genuine NLL contributions $\alpha_s^n \ln^n b$

$$C_{\rm 1}^{(g)}e^{-\frac{\alpha_{\rm S}}{\pi}(C_{\!A}+\frac{2}{3}C_{\!F})\ln^2b}+C_{\rm 1}^{(q)}e^{-\frac{\alpha_{\rm S}}{\pi}(\frac{4}{3}C_{\!F}+\frac{1}{3}C_{\!A})\ln^2b}$$

But NLO programs give only a linear combination of $C_1^{(g)}$ and $C_1^{(q)} \Rightarrow$ Need to extract flavour information from NLO code NLOJET++

[AB in collaboration with M. Brambilla]

- Born and virtual matrix elements
- Real matrix elements
- Dipole subtraction terms
- Dipole finite terms

Size of coeffi cient function

Calculate C_1 by subtracting logs from exact $\Sigma_1(\Delta)$

$$C_1(L) = \Sigma_1(\Delta) - H_{12}L^2 - H_{11}L \qquad \Sigma_{res}(\Delta) = 1 + H_{12}L^2 + H_{11}L + \mathcal{O}(\alpha_s^2)$$

Negative coefficient $1+C_1$, something has to be exponentiated

✓ Large π^2 terms from Coulomb phases

- [Eynck Laenen Magnea 03]
- ✓ Azimuthal integration in $R_{in}(\bar{b})$ gives another π^2
- **X** Symmetric E_t -cut enhancement \Rightarrow vanishing for $\Delta \phi \rightarrow \pi$?
- ★ Large ln 1/x_B from virtual corrections?

Summary and conclusions

Azimuthal decorrelations are intriguing observables

- Complementary to event-shapes for studies of multiple QCD radiation
- At small-x may be sensitive to BFKL effects

A pure PT resummation at NLL gives

- Flattening of distribution around $\Delta \phi = \pi$, as seen in the data
- Need for suitable extension of pdf's for scales below 1GeV

Before matching to exact NLO

- Study PT resummation uncertainties ⇒ impact of missing NNLL?
- Understand sources of large coefficient function

Possible research directions

- Address theoretical uncertainties in the simpler case of vector-boson a_T distribution...
 [see Rosa Delgado's talk]
- Compute coefficient functions in DIS and hadron-hadron collisions
- Analytical calculation of $\Delta \phi$ distribution in the hard limit (BFKL, CCFM)
- NP issues: unintegrated parton densities, higher twist, ...

