Search for Beyond the Standard Model Higgs Bosons at the Tevatron

Tim Scanlon

On behalf of the CDF and DØ Collaborations
Outline

- Introduction
 - Tevatron performance
- Neutral Higgs Searches
 - Minimal SUSY SM (MSSM)
 - Next-to-MSSM
 - Fermiophobic Higgs
- Charged Higgs Searches
- Prospects & Conclusions

[Thanks to all my Tevatron colleagues]
Tevatron Performance

Tevatron continues to perform well
- Over 6.5 fb$^{-1}$ delivered to each experiment
- Peak luminosities of $>3.5 \times 10^{32}$

Luminosity projection curves for Run II
- Performance matching design integrated luminosity of > 7 fb$^{-1}$ by 2009

Tim Scanlon DIS09
Neutral SUSY Higgs

- **Introduction**

- **Minimal Supersymmetric Standard Model (MSSM)**
 - Introduction
 - Neutral Higgs bosons (ϕ) searches
 - $\phi \rightarrow \tau\tau$
 - $b\phi \rightarrow bbb$
 - $b\phi \rightarrow b\tau\tau$
 - Next-to-MSSM search

- **Fermiophobic Higgs**

- **Charged Higgs**

- **Prospects & Conclusions**

Tim Scanlon DIS09
Supersymmetric Higgs Sector

- Minimal Supersymmetric Standard Model (MSSM)
 - 2 Higgs doublets
 - 5 Physical Higgs bosons
 - 3 Neutral: (A, h and H) → φ
 - 2 Charged: H\(^±\)
- Need 2 parameters to calculate all Higgs masses and couplings at tree level
 - \(m_A\)
 - \(\tan(\beta) = \) ratio of vacuum expectation values of two Higgs fields
- Coupling of neutral Higgs to b-quarks enhanced by \(\tan(\beta)\)
 - Production enhanced by \(\tan^2(\beta)\)
MSSM Higgs boson production

- **Neutral MSSM Higgs decays**
 - $b\bar{b} \sim 90%$
 - Large background
 - $\tau\tau \sim 10%$
 - More distinct signature

- **3 channels best suited to benefit from enhanced b-quark coupling**
 - $\phi \rightarrow \tau\tau$
 - $\phi b \rightarrow bbb$
 - $\phi b \rightarrow \tau\tau b$

- **Good b-jet and τ identification vital**

Similar overall sensitivities → Combine

Tim Scanlon DIS09
Neutral MSSM Higgs → \(\tau_l \tau_{\text{had}/l} \)

- **Signal:** Three possible search channels
 - \(\tau_\mu \tau_{\text{had}}, \tau_e \tau_{\text{had}}, \tau_e \tau_\mu \) channels
 - Isolated lepton separated from \(\mu/e/\tau_{\text{had}} \) with opposite sign

- **Main bkgs.:** \(Z \rightarrow \tau \tau \) (irreducible), QCD multi-jet, W+jets

- **DØ (\(\mu \)):** 2.2 fb\(^{-1}\) Summer 2008
 - Combined with published 1 fb\(^{-1}\) channels
 - \(\tau_{\text{had}} \) identified using NNs
 - Remove W+jets: Transverse momentum < 40 GeV

- **CDF (\(\mu, e, e+\mu \) channels):** 1.8 fb\(^{-1}\) Summer 2007
 - \(\tau_{\text{had}} \) identified using variable size cone
 - Remove QCD multi-jet: \(|p_T^{\tau}| + |p_T^{l}| + |\text{missing } E_T| > 55 \) GeV
 - Remove W+jets: Cut on relative directions of \(\tau \) decay and missing \(E_T \)
Neutral MSSM Higgs $\rightarrow \tau_l\tau_{\text{had}}$

- m_{vis} used to derive cross section limits

\[\tau_e\tau_{\text{had}} + \tau_\mu\tau_{\text{had}} \text{ channels} \]

CDF Run II 1.8 fb$^{-1}$
MSSM $\phi \rightarrow \tau\tau$ Search
Preliminary

\[m_\phi \text{ (GeV/c}^2\text{)} \]

Dϕ Preliminary (1-2.2 fb$^{-1}$)

- $\mu\tau$, $e\tau$, $e\mu$

\[m_A = 140 \text{ GeV} \]

\[m_\phi \text{ (GeV/c}^2\text{)} \]

Dϕ Preliminary (1-2.2 fb$^{-1}$)
Neutral MSSM Higgs → $\tau_1\tau_{\text{had}}$

- **Set limits**
 - $\sigma \times \text{BR}(\phi \rightarrow \tau \tau) @ 95\%$ confidence level (CL)
 - $90 < m_A < 250$ GeV

- **MSSM scenarios**
 - No-mixing & m_h^{max} benchmark scenarios
 - $\tan(\beta) > 40 - 60$ excluded for $m_A < 180$ GeV

No-mixing, $\mu = +200$ GeV

$m_h^{\text{max}}, \mu = +200$ GeV

Tim Scanlon DIS09
Neutral MSSM Higgs → bb + b[b]

- **Signal**
 - At least 3 b-tagged jets
 - Peak in dijet mass spectrum

- **Background**
 - Heavy flavour QCD
 - Predicted from data/MC

- **D0: 2.6 fb⁻¹ Summer 2008**
 - Neural network b-tagger
 - Separate 3, 4 and 5-jet channels
 - Keep multiple jet pairings
 - Train kinematic likelihood
 - Cut on likelihood
 - Use dijet invariant mass to set limits

- **CDF: 2 fb⁻¹ Winter 2008**
 - Secondary vertex b-tagger
Neutral MSSM Higgs $\rightarrow bb + b[b]$

- Final limits corrected for:
 - Width: Not negligible at high $\tan\beta$
 - MSSM NLO Corrections: Strongest limits for Higgs mass term, $\mu < 0$

DØ Preliminary, $L=2.6 ~ fb^{-1}$

m_h max, $\mu = -200$ GeV

$gb \rightarrow b\phi$

Excluded Area

Expected Limit

CDF Run II Preliminary (1.9 ~ fb^{-1})

m_A [GeV/c^2]

80 100 120 140 160 180 200 220

tan\beta

80 100 120 140 160 180 200

m_A (GeV/c^2)

100 120 140 160 180 200

95% C.L. upper limits

expected limit

1\sigma band

2\sigma band

observed limit

Higgs width included
Neutral MSSM Higgs $\rightarrow \tau\tau_{\text{had}} + b$

- Lower branching ratio/cross section
 - Cleaner final state
 - Similar sensitivity
 - Updated summer 2008

- Signal: $\tau_{\mu}, \tau_{\text{had}} + \text{b-jet}$

- Main bkgs.: $Z+\text{jets}, \text{QCD multi-jets}, tt$

- Selection:
 - Isolated μ separated from opposite sign τ_{had}
 - τ_{had} identification: NN
 - 1 NN b-tagged jet
 - NN(tt) vs likelihood(QCD) used to set limits
Neutral MSSM Higgs $\rightarrow b\tau_1\tau_{\text{had}}$

- Limits in MSSM parameter space
 - No-mixing & m_h^{max} benchmark scenarios
Neutral SUSY Higgs

- Introduction

- Minimal Supersymmetric Standard Model (MSSM)
 - Introduction
 - Neutral Higgs bosons (ϕ) searches
 \[\phi \rightarrow \tau\tau \]
 \[b\phi \rightarrow bbb \]
 \[b\phi \rightarrow b\tau\tau \]
 - Next-to-MSSM search

- Fermiophobic Higgs

- Charged Higgs

- Prospects & Conclusions
• **Next-to-MSSM Higgs Sector**

 - Two additional pseudo-scalar Higgs bosons (s and a)
 - $h \rightarrow aa$ dominates

 - If $m_a < 2m_\tau$
 - Dominant decay $a \rightarrow \mu\mu$
 - Limit on $m_h > 82$ GeV

 - If $2m_\tau < m_a < 2m_b$
 - Dominant decay $a \rightarrow \tau\tau$
 - Limit on $m_h > 86$ GeV

Tim Scanlon DIS09
NMSSM Higgs → aa

- $m_a < 2m_\tau$: $h \rightarrow aa \rightarrow \mu\mu\mu\mu$
 - Two pairs of collinear muons

- **Backgrounds:** QCD, $Z/\gamma^* \rightarrow \mu\mu$

- **Event Selection**
 - Two muons $\Delta R(\mu, \mu) > 1$
 - ‘Companion’ tracks $\Delta R(\mu, \text{track}) < 1$

- **Set 95% limits in 2D mass window**
 - $\sigma \times \text{BR} < 10 \text{ fb}^{-1}$
 - $\sigma_h \sim 1000 \text{ fb}$
 - $m_h = 120 \text{ GeV}$
 - $\text{BR}(h \rightarrow aa) \sim 1$
 - $\text{BR}(a \rightarrow \mu\mu) < 10\%$

DØ Run II Preliminary, 3.7 fb$^{-1}$

- $M_a = 3 \text{ GeV}$
- $M_a = 1 \text{ GeV}$
- $M_a = 0.5 \text{ GeV}$
- $M_a = 0.2143 \text{ GeV}$
- Data
NMSSM Higgs → aa

- $2m_b > m_a > 2m_\tau$: $h \rightarrow aa \rightarrow \mu\mu\tau\tau$
 - μ decay suppressed
 - τ decay dominates
 - Back-to-back μ and τ pairs

- **Backgrounds:** QCD, $Z/\gamma^*+jets \rightarrow \mu\mu+jets$

- **Event Selection**
 - μ pair $\Delta R(\mu,\mu) < 0.5$, $m_{\mu\mu} < 20$ GeV
 - Missing $E_T > 25$ GeV

- **Set limits @ 95% using dimuon mass**
 - Limit ~4 times larger than Higgs production
Fermiophobic Higgs

- Introduction
- Minimal Supersymmetric Standard Model (MSSM)
- Fermiophobic Higgs
- Charged Higgs
- Prospects & Conclusions
Coupling to fermions highly suppressed

Search for diphoton mass peak
 ~3% resolution

Backgrounds
 Direct production, γ+jets/dijets, Drell-Yan

Selection: 2 photons
 D0: Central, $p_T^{\gamma\gamma} > 35$ GeV
 CDF: Central or endcap, $p_T^{\gamma\gamma} > 75$ GeV
 - Allowing one endcap electron
 ~doubles acceptance
Fermiophobic Higgs → γγ

- No excess, set limits:
 - 95% CL limit

Excluded $m_{h_f} < 106$ GeV

Excluded $m_{h_f} < 102.5$ GeV
Charged Higgs

• Introduction

• Minimal Supersymmetric Standard Model (MSSM)

• Fermiophobic Higgs

• Charged Higgs

• Prospects & Conclusions
Charged Higgs \rightarrow cs

- Search for H^\pm in top decays

- CDF: Summer 2008 2.2fb$^{-1}$
 - Lepton + jet channel
 - $H^\pm \rightarrow cs$
 - MSSM: $\tan(\beta) < 1$ and $m_{H^\pm} < 130$ GeV

- Di-jet mass used to set limits
 - Assume $BR(H^\pm \rightarrow cs) = 1$
Charged Higgs \(\rightarrow c\bar{s}/\tau\nu \)

- **DØ**: Summer 2008 1fb\(^{-1}\)
- Search top decays in dilepton, lepton+jets, lepton+tau channels
 - Compare predicted/observed yields
- **Two models**:
 - **Tauonic**: \(H^\pm \rightarrow \tau\nu \)
 - MSSM: \(\tan(\beta) > 1 \)
 - **Leptophobic**: \(H^\pm \rightarrow cs \)
 - MSSM: \(\tan(\beta) < 1 \) and \(m_{H^\pm} < 130 \) GeV

Graphs

- **DØ Run II Preliminary**
 - Br(\(H^+ \rightarrow c\bar{s}\)) = 1
 - Data (\(L = 1.0 \text{ fb}^{-1}\))
 - t\(\bar{t}\) Br(\(t \rightarrow H^+b\)) = 0.0
 - t\(\bar{t}\) Br(\(t \rightarrow H^+b\)) = 0.3
 - t\(\bar{t}\) Br(\(t \rightarrow H^+b\)) = 0.6
- **Excluded**
 - Br(\(t \rightarrow H^+b\)) > 0.12-0.2

Diagrams

- **Expected limit 95% CL**
- **Observed limit 95% CL**
- **M_{H^\pm} [GeV]**
- **M_{tH} [GeV]**
- **\(\tau\nu\)**
- **leptophobic**
- **tauonic**

Tim Scanlon DIS09
Prospects and Conclusions

- Introduction
- Neutral SUSY Higgs
- Fermiphobic Higgs
- Charged Higgs
- Prospects and Conclusions
Prospects - MSSM Higgs

- Probing very interesting regions
 - > 5.5 fb\(^{-1}\) data available
 - Aiming for rapid inclusion of new data
 - Stable and well developed analyses
 - Algorithmic/analysis improvements

- Short term (this summer)
 - Updated searches:
 - $\phi \rightarrow b\bar{b} + b(b) \& \phi \rightarrow \tau\tau \& b\phi \rightarrow b\tau\tau$
 - New MSSM combination

- Longer term
 - Down to $\tan\beta \sim 20$ for low m_A
 - Or discovery
Conclusions

• Tevatron and CDF/ DØ experiments performing very well

• Wide range of beyond SM Higgs searches performed by CDF & DØ with up to 4.2 fb\(^{-1}\) Run II data:
 - No signal observed, but already powerful!

• Updated CDF and DØ analyses soon
 - Rapid accumulation in new data
 - Improvements in analysis techniques
 - MSSM Combination

Very exciting times ahead!
Backup slides
CDF and DØ experiments

- Both detectors extensively upgraded for Run Ila
 - New silicon vertex detector
 - New tracking system
 - Upgraded μ chambers

- CDF: New plug calorimeter & ToF

- DØ
 - New solenoid & preshowers
 - Run IIb: New inner layer in SMT & L1 trigger

Tim Scanlon DIS09
τ_{had}-Identification

- **CDF: Isolation based**
 - CDF: Isolation based
 - 1 or 3 tracks in variable size and isolation cone
 - Validated via W/Z measurements
 - Efficiency ~ 40-50%
 - Jet fake rate < 1%

- **DØ: 3 NN’s for each τ type**
 - Validated via Z’s

- **Diagrams**
 - Type 1: \(\tau \to \pi^\pm \nu \)
 - Type 2: \(\tau \to \pi^\pm \pi^0 \nu \)
 - Type 3: \(\tau \to \pi^\pm \pi^\pm \pi^\pm (\pi^0) \nu \)

- **Efficiency Table**

<table>
<thead>
<tr>
<th>Tau Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstruction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jets</td>
<td>1.5</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>Taus</td>
<td>9.1</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>NN > 0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jets</td>
<td>0.04</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Taus</td>
<td>5.8</td>
<td>37</td>
<td>13</td>
</tr>
</tbody>
</table>

Tim Scanlon DIS09
b-jet Identification

- MSSM Higgs → bb ~90% of time
 - Improves S/B by > 10

- Use lifetime information
 - Correct for MC/data differences
 - Measured at given operating points

CDF: Secondary vertex reconstruction
- Neutral network increases purity
- Tight = 40% eff, 0.5% mis-tag

DØ: Neural Net tagger
- Secondary vertex & dca based inputs, derived from basic b-tagging tools
- High efficiency, purity
- Tight = 50% eff, 0.5% mis-tag

Tim Scanlon DIS09
Several mature algorithms used:

- 3 main categories:
 - Soft-lepton tagging
 - Impact Parameter based
 - Secondary Vertex reconstruction

Combine in Neural Network:
- vertex mass
- vertex number of tracks
- vertex decay length significance
- chi2/DOF of vertex
- number of vertices
- two methods of combined track impact parameter significances
B-tagging - (DØ) Certification

- Have MC / data differences - particularly at a hadron machine
 - Measure performance on data
 - Tag Rate Function (TRF)
 - Parameterized efficiency & fake-rate as function of p_T and η
 - Use to correct MC b-tagging rate

- b and c-efficiencies
 - Measured using a b-enriched data sample

- Fake-rate
 - Measured using QCD data

Data Sample

- Run b-tagging Directly on Data

MC Sample

- Weight MC using b, c and fake-jet TRFs

b-Tagged Data and MC Samples

Tim Scanlon DIS09
Neutral MSSM Higgs $\rightarrow \tau_\ell \tau_{\text{had}}$

- Set limits
 - $\sigma \times \text{Br}(\phi \rightarrow \tau \tau)$ @ 95% confidence level (CL)

MSSM Higgs $\rightarrow \tau \tau$ Search, 95% CL Upper Limit

CDF Run II Preliminary, 1.8 fb$^{-1}$

DØ Preliminary (1-2.2fb$^{-1}$)

Imperial College London

Tim Scanlon DIS09
Neutral MSSM Higgs → bb + b[b]

- **Background Prediction**
 - Large multijet background
 - Theoretical cross sections very large errors

- **DØ: Sample Composition**
 - Fit MC to data over several b-tagging points

- **DØ: Background Shape**
 - Use double b-tagged data to predict triple b-tagged background

\[
S_{3\text{Tag}}^{\text{exp}}(D, M_{bb}) = \frac{S_{3\text{Tag}}^{\text{MC}}(D, M_{bb})}{S_{2\text{Tag}}^{\text{MC}}(D, M_{bb})} \times S_{2\text{Tag}}^{\text{data}}(D, M_{bb}).
\]

3 b-tag background MC correction factor 2 b-tag data

DØ, L=1fb¹

0 b-tags

1 b-tag

2 b-tags

3 b-tags

Tim Scanlon DIS09
• 95% CL limits on branching ratio
 ➢ Extend sensitivity into $m_{hf} > 130$ GeV
 ▪ Not accessible by LEP

Fermiophobic $h \rightarrow \gamma \gamma$ (3.0 fb$^{-1}$)

Excluded $m_{hf} < 106$ GeV

Excluded $m_{hf} < 102.5$ GeV
MSSM benchmarks

- Five additional parameters due to radiative correction
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - X_t (related to the trilinear coupling $A_t \rightarrow$ stop mixing)
 - M_2 (gaugino mass term)
 - μ (Higgs mass parameter)
 - M_{gluino} (comes in via loops)

- Two common benchmarks
 - Max-mixing - Higgs boson mass m_h close to max possible value for a given $\tan\beta$
 - No-mixing - vanishing mixing in stop sector \rightarrow small mass for h

<table>
<thead>
<tr>
<th></th>
<th>m_h-max</th>
<th>no-mixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{SUSY}</td>
<td>1 TeV</td>
<td>2 TeV</td>
</tr>
<tr>
<td>X_t</td>
<td>2 TeV</td>
<td>0</td>
</tr>
<tr>
<td>M_2</td>
<td>200 GeV</td>
<td>200 GeV</td>
</tr>
<tr>
<td>μ</td>
<td>\pm200 GeV</td>
<td>\pm200 GeV</td>
</tr>
<tr>
<td>m_g</td>
<td>800 GeV</td>
<td>1600 GeV</td>
</tr>
</tbody>
</table>
MSSM evolution

\[\tan \beta \]

\[m_A \ (\text{GeV}) \]

- 260 pb\(^{-1}\)
- 1 fb\(^{-1}\)
- 2 fb\(^{-1}\)
- 4 fb\(^{-1}\)
- 8 fb\(^{-1}\)

No mixing
Max. mixing

(DØ 2 fb\(^{-1}\))
(DØ 4 fb\(^{-1}\))
(DØ 8 fb\(^{-1}\))

h/A/H → ττ
95% exclusion sensitivity

Imperial College
London

Tim Scanlon DIS09