Transversity signal in two hadron pair production at COMPAS

Heiner Wollny University of Freiburg on behalf of COMPASS

Outline:

- COMPASS experiment
- Transversity with Interference Fragmentation Function
- Results of 2007 Proton run

COMPASS Experiment

COMPASS Detector

- high intensity beam ($2 \cdot 10^8 \mu^+/spill$)
- two stages spectrometer: \rightarrow large angular acceptance ($0 \le \theta_{lab} \le 180 \text{ mrad}$) ECAL2 \rightarrow broad kinematical range HCAL2 SM₂ ECAL1 HCAL RICH Muonfilter2 SM1 Polarized Target Muonfilter1

Physikalisches Institut

COMPASS Polarized Target

COMPASS target (\geq 2006):

- ► 3 target cells
- ► acceptance: 180 mrad
- target material: NH₃
- dilution factor: $f \simeq 15 \%$
- polarization: $P_T \sim 90\%$
- reversal of polarization every 4-5 days

Z_{vtv} [cm]

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS $\ell P \rightarrow \ell' X$

helicity distribution in polarized DIS $\vec{l} \, \vec{P} \rightarrow \ell' X$

transversity distribution in polarized SIDIS $\ell P^{\uparrow} \rightarrow \ell' hhX$ Interference FF $\ell P^{\uparrow} \rightarrow \ell' hX$ Collins FF $\rightarrow A$.Bressan $\ell P^{\uparrow} \rightarrow \ell' \Lambda X$ FF of $q^{\uparrow} \rightarrow \Lambda$ on Wed.

Measuring transversity with Two-Hadron-Interference-FF H_1^{\triangleleft} :

 \rightsquigarrow azimuthal asymmetry:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta$

 $\phi_{RS} = \phi_R + \phi_S - \pi$

Physikalisches Institu

Measuring transversity with Two-Hadron-Interference-FF H_1^{\triangleleft} :

two-hadron plane

 \rightarrow azimuthal asymmetry:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta$

 $\phi_{RS} = \phi_R + \phi_S - \pi$

Physikalisches Institu

Single Spin Asymmetries in Two hadron production: 1

Measuring transversity with Two-Hadron-Interference-FF H_1^{\triangleleft} :

 \rightsquigarrow azimuthal asymmetry:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta$ $\phi_{RS} = \phi_R + \phi_S - \pi$

Physikalisches Institu

Single Spin Asymmetries in Two hadron production: 1

Measuring transversity with Two-Hadron-Interference-FF H_1^{\triangleleft} :

 \rightarrow azimuthal asymmetry:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta$ $\phi_{RS} = \phi_R + \phi_S - \pi$

hysikalisches Institu:

For this analysis: $\sin \theta$ can be neglected

Physikalisches Institut Alsert-Ludwigs-Universiti Freburg

Measured asymmetry A is a convolution of transversity $\Delta_T q(x)$ and

Two-Hadron-Interference-FF H_1^{\triangleleft} :

$$A_{RS} = \frac{A}{f P_T D_{nn}} = \frac{\sum_q e_q^2 \cdot \Delta_T q(x) \cdot H_1^{\triangleleft}(z, M_{h+h^-}^2)}{\sum_q e_q^2 \cdot q(x) \cdot D_1(z, M_{h+h^-}^2)}$$

$$H_1^{\triangleleft} = H_1^{\triangleleft, sp} + \cos\theta H_1^{\triangleleft, pp}$$

f target dilution factor

 P_T target polarization $D_{nn} = rac{1-y}{1-y+y^2/2}$ depolarization factor

Physikalisches Institut Altert-Lutangs-Universitif FinBurg

Measured asymmetry A is a convolution of transversity $\Delta_T q(x)$ and

Two-Hadron-Interference-FF H_1^{\triangleleft} :

Physikalisches Institut ABert-Ludwigs-Universität Findurg

Data taking in 2007: May to November

$81.5 \cdot 10^{12}$ muons on tape

equally shared between transverse and longitudinal target polarization

Total statistics for transverse target polarization (after all cuts):

Proton target (NH ₃)	Deuteron target (⁶ LiD)
h^+h^- pairs	h^+h^- pairs
11.28 · 10 ⁶	$6.1\cdot 10^6$

Considering:
$$\langle f \cdot P_T \rangle_{NH_3} \simeq \frac{1}{\sqrt{2}} \langle f \cdot P_T \rangle_{^6LiD}$$

 \rightsquigarrow similar statistical precision

Asymmetry Extraction: Method

Physikalisches Institut Abert-Ludmgs-Universitit Findurg

Splitting middle cell into two parts \sim two couples of cells with opposite polarization

 \sim two independent values for the asymmetries per period

Extraction: Extended Unbinned Maximum Log-Likelihood Fit:

14 - cign of target polarization

$$P^{\uparrow\downarrow}(\phi_h, \phi_S) = a \cdot g^{\uparrow\downarrow}(\vec{A}) \qquad \begin{array}{l} a = \text{acceptance} \\ g^{\uparrow\downarrow}(\vec{A}) = 8 \text{ spin dependent modulations} \\ \text{plus } \cos \phi_R \text{ and } \cos 2\phi_R \end{array}$$
$$H = (\prod_i P_j) \cdot e^{-\mu}, \qquad \text{'extended' factor:} \quad \mu = \int d\phi_R \int d\phi_S P^{\uparrow\downarrow}(\phi_h, \phi_S)$$

Separation of acceptance and spin dependent modulations:

Coupling of:

two cells (u,d) with opposite polarization $\uparrow \downarrow$ and two periods (p1,p2) with opposite target polarization:

Physikalisches Institu

Fix acceptances with Assumption:

$$C_u = \frac{a_u^{\uparrow}}{a_u^{\downarrow}}; \ C_d = \frac{a_d^{\downarrow}}{a_d^{\downarrow}};$$

2007 Proton Run: Data Quality Checks

Data quality checks:

- detector profiles
- event reconstruction
- ▶ *K*⁰-reconstruction (invariant mass)
- distributions of kinematical variables

 $x_{\textit{bj}}, \textit{Q}^2, \textit{y}, \textit{W}, \textit{p}_{\mu'}, \phi_{\mu'_{\textit{lab}}}, \theta_{\mu'_{\textit{lab}}}, \textit{p}_{\textit{had}}, \textit{p}_{\textit{T}_{\textit{had}}}, \textit{z}, \phi_{\textit{had}_{\textit{Lab}}}, \theta_{\textit{had}_{\textit{Lab}}}, \phi_{\textit{h}}, \phi_{\textit{S}}, \textit{Z}_{\textit{vertex}}$

SIDIS Event Selection

DIS cuts:

- $\blacktriangleright Q^2 > 1 \, ({\rm GeV}/c)^2$
- ▶ 0.1 < y < 0.9
- ▶ $W > 5 \,\mathrm{GeV}/c^2$

SIDIS Event Selection

DIS cuts:

- $\blacktriangleright \ Q^2 > 1 \, ({\rm GeV}/c)^2$
- ▶ 0.1 < y < 0.9
- ▶ $W > 5 \,\mathrm{GeV}/c^2$

SIDIS Event Selection

hadron cuts:

- ► x_F > 0.1
- ► *z_i* > 0.1
- ► $z_{sum} = z_1 + z_2 < 0.9$
- ► $R_T > 0.07 \, \text{GeV}/c$

Mean Kinematics - Proton Data 2007

Physikalisches Institu

Systematic Tests

Tests for systematic errors:

- Splitting spectrometer into sectors:
 - Left / Right
 - ► Top / Bottom
- Splitting middle cell: two asymmetries per double period
- Check for false asymmetries:
 Combination of cells with same polarization
- Comparison of 4 estimators for asymmetry extraction 1D and 2D double ratios, binned LH, unbinned LH

Results Proton 2007 and predictions

Bacchetta, Radici hep-ph/0608037

Physikalisches Institu

Results Proton 2007 and HERMES

Physikalisches Institut Alzert-Ludwige-Untversitit Freburg

Results Proton 2007 and HERMES

Physikalisches Institut Abert-Ludwige-Universität Freburg

Results Deuteron 2002-2004

First result for asymmetry in two hadron pair production measured in COMPASS 2007 proton transverse run:

Measured Asymmetry:

- significantly different from zero
 - \rightsquigarrow Two Hadron-Interference-FF and Transversity are non zero
- in agreement with prediction
- signal stronger than measured by ${\sf HERMES}$

Outlook:

Identified hadron pairs

Thank You

email: heiner.wollny@cern.ch

22

Back up

Back Up

Definition of R_T

$$\mathbf{R}_{\mathbf{T}} = \frac{z_2 \mathbf{P}_{1\mathsf{T}} - z_1 \mathbf{P}_{2\mathsf{T}}}{z_1 + z_2}$$

$$\cos \phi_R = \frac{\vec{q} \times \vec{\ell}}{|\vec{q} \times \vec{\ell}|} \cdot \frac{\vec{q} \times \vec{R}_T}{|\vec{q} \times \vec{R}_T|}, \qquad \sin \phi_R = \frac{(\vec{\ell} \times \vec{R}_T) \cdot \hat{q}}{|\hat{q} \times \vec{\ell}| |\hat{q} \times \vec{R}_T|}$$

Table of Contents

COMPASS Experiment

Detector Polarized Target

Transverse Spin Physics

Single Spin Asymmetries in Two Hadron Pair Production

2007 Proton Run

Asymmetry Extraction

Data Quality Checks SIDIS Event Selection Mean Kinematics Systematic Tests

Results Proton 2007

Comparison with predictions Results Proton 2007 and HERMES

Results Deuteron 2002-2004

Summary

Back Up

Table of Contents

