Sivers and Collins effects: from SIDIS to proton-proton scattering

MARIAELENA BOGLIONE

Based on work in collaboration with M. Anselmino, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin

A (complicated) work in progress ...

... based on a simple idea

- <u>STEP ONE</u>: take Sivers, transversity and Collins functions as extracted from fitting SIDIS and $e^+e^- \rightarrow h_1h_2X$ processes, in a non collinear, factorized pQCD scheme
- <u>STEP TWO</u>: Assuming a similar scheme, use them to calculate single spin asymmetries in polarized proton-proton scattering

SIDIS and e^+e^- scattering experimental data allow us to extract the transversity and Sivers distribution functions, and the Collins fragmentation function

• Sivers azimuthal asymmetry from HERMES and COMPASS data:

SIDIS and e⁺e⁻ scattering experimental data allow us to extract the transversity and Sivers distribution functions, and the Collins fragmentation function

 Transversity distribution function and Collins fragmentation function from a <u>simultaneous</u> fit of SIDIS and e⁺e⁻ scattering experimental data Anselmino et al., Proceedings of Ringberg Workshop

Anselmino et al., Proceedings of Ringberg Workshoj On New Trends in HERA Physics 2008, Germany

0.

27 April 2009

M. Boglione

What do we learn from this exercise ?

• The favoured and unfavoured Collins fragmentation functions are strictly constrained, thanks to the high statistics of the BELLE data.

6

- The transversity and Sivers distribution functions are constrained by SIDIS data ONLY in a range of relatively low values of x (x<0.3).
- Therefore, the SIDIS data are unable to fix the free parameters (β) which control the large-x behavior of the transversity and of the Sivers distribution functions. As a consequence, in these fits the β parameters are chosen to be flavour independent.

Further contributions, proportional to the Boer-Mulders and pretzelosity functions, are negligible (checked numerically)

NOTE:pp data cover a range of larger x values compared to SIDIS data

27 April 2009

M. Boglione

M. Boglione

Universality of Sivers and Collins functions

11

• The Collins fragmentation function is universal (no initial/final state interactions, no effects induced by requiring color gauge invariance)

J. Collins and A. Metz, Phys. Rev. Lett. 93,252001 (2004), F. Yuan, arXiv:0903.4680

• The Sivers distribution function (naively time reversal odd) is subject to initial/final state interaction – color gauge invariance requirements induce color factors (process dependence).

C. J. Bomhof, P. J. Mulders, F. Pijlman, Eur. Phys. J. C 47, 147 (2006)

Example:

$$(\Delta^{N} f_{q/p^{\uparrow}})^{SIDIS} = -(\Delta^{N} f_{q/p^{\uparrow}})^{Drell-Yan}$$

• Many different elementary scattering amplitudes contribute to pp scattering: each of them is affected by a different color factor (UNDER DEBATE)

Bacchetta, Bomhof, Mulders, Pijlman, Phys.Rev.D72:034030,2005 P. Ratcliffe, O.Teryaev (2008)

From SIDIS to Polarized proton-proton scattering

12

• The behavior of the Sivers and the transversity functions at **large x** is controlled by the β_{q} parameters

$$\Delta^{N} f_{q/p^{\uparrow}}(x,k_{\perp}) \propto g(k_{\perp}) \Delta^{N} f_{q/p^{\uparrow}}(x)$$

$$\propto x^{\alpha_{q}} (1-x)^{\beta_{q}}$$

 $\Delta_T q(x,k_{\perp}) \propto g'(x,k_{\perp}) \Delta_T q(x)$ $\propto x^{\alpha_q} (1-x)^{\alpha_q}$

- SIDIS is unable to determine the β_q parameters, because there are no exp. data at **large x**. Therefore we perform a scan over a grid of configurations in which β_u and β_d are fixed from 0 to 4 (in steps of 0.5), and re-run the SIDIS fit. We then select out only the parameter configurations that correspond to a SIDIS fit $\chi^2_{d.o.f}$ not larger than about 20% from the minimum original value. The accepted configurations turn out to be ~ 85.
- Finally we use all these parameter sets to build a band of for the Sivers and Collins effect in protonproton scattering

NOTE: Issues on detailed evolution of Collins function to be studied further

M. Boglione

