Chiral-odd and Chiral-even Generalized Parton Distributions in Transverse and Longitudinal Position Space

Asmita Mukherjee
Indian Institute of Technology, Mumbai, India

- Chiral Odd GPDs: Why they are interesting
- Overlap representation of Chiral-odd GPDs
- Simple example: electron at one loop
- GPDs in position space
- Phenomenological study

DIS 09; Madrid, April 2009

In collaboration with D. Chakrabarti (IIT Kanpur), R. Manohar (IIT Bombay)
Deeply virtual Compton scattering (DVCS) Amplitude

Deeply virtual Compton scattering:

\[
M^{IJ}(\vec{q}_\perp, \vec{q}_\perp', \zeta) = \epsilon^I_\mu \epsilon^{*J}_\nu M^{\mu\nu}(\vec{q}_\perp, \vec{q}_\perp', \zeta) = -e_q^2 \frac{1}{2P^+} \int_{\zeta-1}^{1} dx \\
\times \left\{ t^{IJ}(x, \zeta) \bar{U}(P') \left[H(x, \zeta, t) \gamma^+ + E(x, \zeta, t) \frac{i}{2M} \sigma^{+\alpha}(-\Delta \alpha) \right] U(P) \right\},
\]

where \(\bar{P} = \frac{1}{2}(P' + P) \),

\[
t^{\uparrow\uparrow}(x, \zeta) = t^{\downarrow\downarrow}(x, \zeta) = \frac{1}{x - i\epsilon} + \frac{1}{x - \zeta + i\epsilon}
\]
DVCS contd.

DVCS amplitude contains

\[
\int \frac{dy^-}{8\pi} e^{ixP^+ y^- / 2} \left. \langle P', \lambda' | \bar{\psi}(0) \gamma^+ \psi(y) | P, \lambda \rangle \right|_{y^+ = 0, y_\perp = 0} = \frac{1}{2P^+} \bar{U}(P', \lambda') \left[H(x, \zeta, t) \gamma^+ + E(x, \zeta, t) \frac{i}{2M} \sigma^{+\alpha}(-\Delta_\alpha) \right] U(P, \lambda),
\]

\(H(x, \zeta, t)\) and \(E(x, \zeta, t)\) are chiral even GPDs; as well as \(\tilde{H}(x, \zeta, t)\) and \(\tilde{E}(x, \zeta, t)\)

\[
\int \frac{dy^-}{8\pi} e^{ixP^+ y^- / 2} \left. \langle P', \lambda' | \bar{\psi}(0) \gamma^+ \gamma_5 \psi(y) | P, \lambda \rangle \right|_{y^+ = 0, y_\perp = 0} = \frac{1}{2P^+} \bar{U}(P', \lambda') \left[\tilde{H}(x, \zeta, t) \gamma^+ \gamma_5 + \tilde{E}(x, \zeta, t) \frac{\gamma_5 \Delta^+}{2M} \right] U(P, \lambda),
\]

Momentum transfer \(\Delta = P - P', t = \Delta^2, \zeta = \frac{\Delta^+}{P^+}\)

\(x\) is the fraction of the proton momentum carried by the active quark
Chiral-odd GPDs

Defined as the non-forward matrix elements of light-like correlations of tensor charge

We use the parametrization

\[
P^+ \int \frac{dz^-}{2\pi} e^{iP^+z^-} \langle P', \lambda' | \bar{\psi}(\frac{-z^-}{2})\sigma^+ j \gamma_5 \psi(\frac{z^-}{2}) | P, \lambda \rangle_{z^+=0, z_\perp=0} = H_T(x, \zeta, t)\bar{u}(P')\sigma^+ j \gamma_5 u(P) - \tilde{H}_T(x, \zeta, t)\varepsilon^+ j \alpha \beta \bar{u}(P')\frac{\Delta \alpha P_\beta}{M^2} u(P)
\]

\[
- E_T(x, \xi, t)\varepsilon^+ j \alpha \beta \bar{u}(P')\frac{\Delta \alpha \gamma \beta}{2M} u(P) + \tilde{E}_T(x, \zeta, t)\varepsilon^+ j \alpha \beta \bar{u}(P')\frac{P_\alpha \gamma \beta}{M} u(P).
\]

Momenta of initial and final protons:

\[
P = \left(P^+, \vec{0}_\perp, \frac{M^2}{P^+} \right), P' = \left((1 - \zeta)P^+, -\vec{\Delta}_\perp, \frac{M^2 + \vec{\Delta}_\perp^2}{(1 - \zeta)P^+} \right)
\]

Involves quark helicity flip

In the forward limit $H_T(x, 0, 0)$ reduces to the transversity distribution (generalized transversity)
Chiral Odd GPDs : Why ? How to measure ?

- \(\int dxdy[H_T(x, 0, 0) + 2\bar{H}_T(x, 0, 0) + E_T(x, 0, 0)] \) related to the transverse angular momentum carried by transversely polarized quarks in an unpolarized target: similar to Ji’s relation

- \(\int dx[2\bar{H}_T(x, 0, 0) + E_T(x, 0, 0)] \) tells us in which direction the average position of the quarks with spin in the \(x \) direction is shifted in the \(y \) direction for an unpolarized target w.r.t the transverse center of momentum: can determine the sign of Boer-Mulders function

M. Burkardt (2005)

- Certain combinations of chiral-odd GPDs also give the correlation between the transverse quark spin and target spin
- Several proposals to measure \(H_T \): for example in photo or electroproduction of two vector mesons on a nucleon target

- Exclusive process \(\gamma^* P \rightarrow \pi^0 P \): to measure the tensor charge

 S. Ahmad, G. Goldstein, S. Liuti (2008)
Overlap Representation

- The target state is expanded in terms of multiparticle light-front wave functions in Fock space; choose light-front gauge $A^+ = 0$

GPDs are given in terms of overlaps of the light-front wave functions

- Both chiral even and chiral odd GPDs; diagonal parton number conserving $n \rightarrow n$ overlap in the kinematical regime $\zeta < x < 1$ and $\zeta - 1 < x < 0$

- Off-diagonal $n + 1 \rightarrow n - 1$ overlap for $0 < x < \zeta$ where the parton number is decreased by two: higher Fock sector LFWF

 Diehl, Feldman, Jacob, Kroll (2001);
 Brodsky, Diehl, Huang (2001)
 Chakrabarti, Manohar, Mukherjee (2008)

- Both contributions needed to get the complete kinematical region as well as to calculate the moments at non-zero ζ

- Only diagonal overlap when ζ is zero

- In chiral odd GPDs, overlap of different quark helicities whereas in chiral even GPDs no helicity flip
Overlap Representation for Chiral-odd GPDs

\[F_{T\lambda',\lambda}^{n\rightarrow n} = (1 - \zeta)^{1 - \frac{n}{2}} \sum_{n,\lambda_i} \int \Pi_{i=1}^{n} \frac{dx_id^2k_i^\perp}{16\pi^3} 16\pi^3 \delta(1 - \sum_j x_j)\delta^2(\sum_{j=1}^{n} k_j^\perp)\delta(x - x_1) \]

\[\psi_n^\lambda (x_i', k_i^\perp, \lambda_i) \psi_n^\lambda (x_i, k_i^\perp, \lambda_i) \delta_{\lambda_1', -\lambda_1} \delta_{\lambda_i', \lambda_i} (i \neq 1); \]

where \(x_i' = \frac{x_i}{1 - \zeta}; \ k_i'^\perp = k_i^\perp + \frac{x_i}{1 - \zeta} \Delta_\perp \) for \(i = 2, \ldots, n \) and

\(x_1' = \frac{x_1 - \zeta}{1 - \zeta}; \ k_1'^\perp = k_1^\perp - \frac{1 - x_1}{1 - \zeta} \Delta_\perp. \)

\[F_{T\lambda',\lambda}^{n+1\rightarrow n-1} = (1 - \zeta)^{3/2 - n/2} \sum_{n,\lambda_i} \int \Pi_{i=1}^{n+1} \frac{dx_id^2k_i^\perp}{16\pi^3} (16\pi^3)^2 \delta(1 - \sum_{j=1}^{n+1} x_j)\delta^2(\sum_{j=1}^{n+1} k_j^\perp) \]

\[\delta(x_{n+1} + x_1 - \zeta)\delta^2(k_{\perp n+1} + k_{1\perp} - \Delta_\perp)\delta(x - x_1)\psi_{n-1}^\lambda (x_i', k_i'^\perp, \lambda_i) \psi_{n+1}^\lambda (x_i, k_i^\perp, \lambda_i) \delta_{\lambda_1', -\lambda_{n+1}} \delta_{\lambda_i', \lambda_i} (i = 2, \ldots, n). \]

where \(x_i' = \frac{x_i}{1 - \zeta}; \ k_i'^\perp = k_i^\perp + \frac{x_i}{1 - \zeta} \Delta_\perp, \) for \(i = 2, \ldots, n \) label \(n - 1 \) spectators.
Consider a dressed electron state instead of a proton

State is expanded in Fock space: $|e^-\gamma\rangle$ and $|e^-e^-e^+\rangle$ contribute to $O(\alpha)$

- Generalized form of QED: mass M to the external electrons, m to the internal electron lines, λ to the internal photon lines → composite fermion state with mass M: a fermion and a vector ‘diquark’ constituents

 Brodsky, Drell (1980); Brodsky, Chakrabarti, Harindranath, Mukherjee, Vary (2006)

 $M < m + \lambda$ to prevent decay

- Two and three particle LFWFs are systematically evaluated in perturbation theory

 - $2 \rightarrow 2$ overlap in the region $\zeta < x < 1$ and $3 \rightarrow 1$ overlap in the region $0 < x < \zeta$

- There is also a contribution from the single particle sector: wave function renormalization; contributes at $x = 1$, not included in this analysis

- A field theory inspired model satisfying the properties like polynomiality and positivity of GPDs: gives an intuitive picture of spin and orbital angular momentum of a composite relativistic system
Chiral Odd GPDs: Analytic forms for $\zeta < x < 1$

\[E_T(x, \zeta, t) = \frac{e^2}{8\pi^3} \frac{2M\pi}{1-\zeta} (M - \frac{m}{x})x(1-x)I_3, \]

\[\tilde{E}_T(x, \zeta, t) = \frac{e^2}{8\pi^3} \frac{M\pi}{1-\zeta} \left[- (1-x) \left\{ (M - \frac{m}{x})x + (M - \frac{m}{x'})x' \right\} I_1
+ (M - \frac{m}{x})x(1-x)I_2 \right], \]

\[H_T(x, \zeta, t) = \frac{e^2}{8\pi^3} \frac{\pi}{2} \left[\frac{x + x'}{2(1-x)} \ln(\frac{\Lambda^4}{DD'}) + \left\{ \frac{x + x'}{2(1-x)} B(x, \zeta)
+ \frac{\zeta M}{1-\zeta} (M - \frac{m}{x})x(1-x) \right\} I_2
- \frac{\zeta M}{1-\zeta} \left\{ (M - \frac{m}{x})x(1-\zeta) + (M - \frac{m}{x'})x' \right\} (1-x')I_1 \right]. \]
Chiral Odd GPDs : Analytic forms (contd.)

\[B(x, \zeta) = M^2 x'(1 - x') - m^2(1 - x') - \lambda^2 x' + M^2 x(1 - x) - m^2(1 - x) - \lambda^2 x \]

\[I_1 = \int_0^1 dy \frac{1 - y}{Q(y)} \]

\[I_2 = \int_0^1 dy \frac{1}{Q(y)} \]

\[I_3 = \int_0^1 dy \frac{y}{Q(y)} \]

\[Q(y) = y(1 - y)(1 - x')^2 \Delta_{\perp}^2 - y(M^2 x(1 - x) - m^2(1 - x) - \lambda^2 x) \]
\[- (1 - y)(M^2 x'(1 - x') - m^2(1 - x') - \lambda^2 x') \]

\[D = M^2 x(1 - x) - m^2(1 - x) - \lambda^2 x \text{ and } D' = M^2 x'(1 - x') - m^2(1 - x') - \lambda^2 x' \]
For all plots, $M = 0.51$ MeV, $m = 0.5$ Mev, $\lambda = 0.02$ Mev; normalization $\frac{e^2}{(2\pi)^3} = 1$

E_T is independent of x for small and medium x, for $x \to 1$ it is independent of t and goes to 0

Increases in magnitude with increase of ζ for fixed x; finite at $\zeta = 0$

Decreases in magnitude with increase of t
One has to include also the higher Fock space contribution for $\zeta > x$ in order to calculate x moments.

Behaviour for $x > \zeta$ from these plots.

\tilde{E}_T is zero at $\zeta = 0$.

$\tilde{E}_T(x, \zeta, t)$
- H_T decreases with increase of ζ for fixed x
- Finite at $\zeta = 0$
- Reduces to transversity in the forward limit: coefficient of Log term gives the correct splitting function for leading order evolution
- Single particle Fock space sector contribution important to get the correct behaviour at $x \to 1$: no divergence
Generalized Parton Distributions in Impact Parameter Space

Fourier transform with respect to the transverse momentum transfer \(\Delta_\perp \) gives GPDs in impact parameter space

\[
\mathcal{H}(x, \zeta, b_\perp) = \frac{1}{(2\pi)^2} \int d^2 \Delta_\perp e^{-i\Delta_\perp \cdot b_\perp} H(x, \zeta, t)
\]

\[
= \frac{1}{2\pi} \int \Delta d\Delta J_0(\Delta b) H(x, \zeta, t),
\]

where \(\Delta = |\Delta_\perp| \) and \(b = |b_\perp| \)

Other chiral even and chiral odd GPDS in impact parameter space are defined in the same way

Probability interpretation when \(\zeta = 0 \): impact parameter dependent parton distributions
GPDs in Longitudinal Position Space

Connection with Wigner distribution: Belitsky, Ji, Yuan (2003)

DVCS amplitude in longitudinal position space: analogy with diffraction pattern in optics
Brodsky, Chakrabarti, Harindranath, Mukherjee, Vary (2006)

We define a boost invariant impact parameter conjugate to the longitudinal momentum transfer as
\[\sigma = \frac{1}{2} b^- P^+ \]

\[\mathcal{H}(x, \sigma, t) = \frac{1}{2\pi} \int_0^{\zeta_f} d\zeta e^{i \frac{1}{2} P^+ \zeta b^-} H(x, \zeta, t) \]
\[= \frac{1}{2\pi} \int_0^{\zeta_f} d\zeta e^{i \sigma \zeta} H(x, \zeta, t). \]

Upper limit is the maximum \(\zeta \) value allowed for fixed \(-t \)

To get the complete picture both \(x > \zeta \) and \(x < \zeta \) contributions will have to be considered: chiral even calculated in the reference above

Similarly for other chiral even and chiral odd GPDS
Two Particle Light-front Wave Functions
Chiral Odd GPDs in Position Space (1 > x > ζ)

- As \(\bar{H}_T = 0 \) in this model, \(E_T \) in impact parameter space gives the distortion in the distribution of transversely polarized quarks in an unpolarized proton.
- Related to the spin-orbit correlation in the two-particle LFWF.
- In longitudinal position space one can observe diffraction pattern.
Chiral Odd GPDs in Position Space ($1 > x > \zeta$)

- Zero at $\zeta = 0$: odd function of ζ
- First study in position space
- No diffraction pattern in longitudinal position space
Chiral Odd GPDs in Position Space \((1 > x > \zeta)\)

- Delta function peaked at \(b_\perp = 0\) for a free Dirac particle; smearing in \(b_\perp\) due to two-particle LFWF

- Reduces to transversity in the forward limit: gives the correlation of the transverse spin of the quark and the transverse spin of the nucleon in a polarized target in impact parameter space

- Diffraction pattern in impact parameter space
- Used parametrization of Ahmad, Honkanen, Liuti, Taneja (2007)

- At zero ζ, parametrization obtained by simultaneously fitting the experimental data on nucleon form factor and DIS structure functions

- Spectator model with Regge-type term at input scale

- We have used parametrizations set I (u quark) at scale $0.09 \, GeV^2$
GPD model in position space

- Used parametrization of Ahmad, Honkanen, Liuti, Taneja (2007)

- We have used parametrizations set I (u quark) at scale 0.09 GeV²
Summary

• Studied the chiral-odd GPDs in transverse and longitudinal position space for non-zero skewness ζ

• Presented complete overlap formulas both for $1 > x > \zeta$ and $0 < x < \zeta$ in terms of light-front wave functions in light-front gauge

• Used a self consistent field theory inspired relativistic two-body model, namely for the quantum fluctuation of an electron at one loop in QED: most general form of this model may act as a template for the quark spin-one diquark structure of the proton

• Only the diagonal $2 \rightarrow 2$ overlap contributes for $x > \zeta$: spin-orbit correlations in the two-particle LFWFs as well as the correlations between the quark transverse spin and the target spin

• Also presented recent parametrization of GPDs in position space