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Introduction

Motivation:
Investigation of conformal properties of the NLO BFKL kernel and relation
between this kernel and the linearized BK kernel.

The basis of the BFKL approach: gluon Reggeization.
The advantage: generality (arbitrary momentum and colour exchanges).
Original definition: momentum representation.

Alternative approach: the colour dipole picture.
The shortage: falling out of amplitudes with colour exchanges.
The advantage: simplicity of the non-linear generalization–BK equation.
Ia. Balitsky, 1996,
Yu. Kovchegov, 1999.
Formulation: impact parameter space.

Requirement: the same predictions in the common area.
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Introduction

In the LO the BFKL kernel for scattering of colourless objects can be
written in the Möbius invariant form
L.N. Lipatov, 1986.
The Möbius invariance can be made evident by transformation from the
transverse momentum to the transverse coordinate representation.
V.F., R. Fiore, A. Papa, 2006.
The Möbius invariant form the LO BFKL kernel in the coordinate
representation coincides with the kernel of the colour dipole approach
N.N. Nikolaev and B.G. Zakharov, 1994,
A. H. Mueller, 1994.
Actually this kernel can be written by Lipatov as early as 1985, if he had
not restricted himself by check of the Möbius invariance in the operator
form. Only by chance he had not written explicitly the kernel in the
coordinate space.
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Introduction

Moreover, the LO BK equation appears as a special case of the nonlinear
evolution equation which sums the fan diagrams for the BFKL Green’s
functions in the Möbius representation
J.Bartels, L.N. Lipatov, G.P. Vacca, 2004.
In the NLO the conformal invariance is violated by renormalization. But
one could expect that it is conserved in N = 4 SYSY Yang-Mills theories.

One could expect also coincidence of the Möbius form of the BFKL kernel
and the kernel of the linearized BK equation.
However, the situation is not so simple.
The NLO kernels are not unambiguously defined.
The ambiguity of the NLO kernels is analogous to the ambiguity of the
NLO anomalous dimensions. It is caused by the possibility to redistribute
radiative corrections between the kernels and the impact factors.
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General overview

In the BFKL approach scattering amplitudes AA′B′

AB are presented in the
form : ΦA′A ⊗ G ⊗ ΦB′B .

pA pA′

pB pB′

G

ΦB′B

ΦA′A

q1

q′
1

q2

q′
2

The impact factors ΦA′A and ΦB′B describing
transitions A → A′ and B → B′ depend
on properties of scattering particles.

All energy dependence is contained in
the Green’s function G for two interacting
Reggeized gluons.
Originally the approach was formulated in the
momentum space.

The impact factors and the kernel of the BFKL equation for the Green’s
function are defined in the transverse momentum space.

The kernel is known now in the NLO for t 6= 0 and all possible t-channel
colour states.
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General overview

For colourless objects the impact factors in the representation

δ(~qA − ~qB)discsA
A′B′

AB =
i

4(2π)D−2
〈A′Ā|eY K̂

1

~̂q 2
1 ~̂q

2
2

|B̄′B〉

are “gauge invariant”:

〈A′Ā|~q, 0〉 = 〈A′Ā|0, ~q〉 = 0 .

Therefore 〈A′Ā|Ψ〉 = 0 if 〈~r1, ~r2|Ψ〉 does not depend either on ~r1 or on ~r2.
〈A′Ā|K̂ is “gauge invariant” as well, because 〈~q1, ~q2|K̂r|~q

′

1 , ~q
′

2〉 vanishes at
~q

′

1 = 0 or ~q
′

2 = 0.

It means that we can change |In〉 ≡
(
~̂q 2
1 ~̂q

2
2

)−1
|B̄′B〉 for |Ind〉, where |Ind〉

has the “dipole ” property 〈~r, ~r|Ind〉 = 0.
After this one can omit the terms in the kernel proportional to δ(~r1′2′), as
well as change the terms independent either of ~r1 or of ~r2 in such a way
that the resulting kernel becomes conserving the “dipole ” property.
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General overview

The kernel obtained in this way is called Möbius form of the BFKL kernel.
It can be written as

〈~r1~r2|K̂M |~r ′

1~r
′

2 〉 = δ(~r11′)δ(~r22′)

∫
d~r0 g0(~r1, ~r2;~r0)

+δ(~r11′)g1(~r1, ~r2;~r
′

2 ) + δ(~r22′)g1(~r2, ~r1;~r
′

1 ) +
1

π
g2(~r1, ~r2;~r

′

1 , ~r
′

2 )

with the functions g1,2 turning into zero when their first two arguments
coincide. The first three terms contain ultraviolet singularities which
cancel in their sum, as well as in the LO, with account of the “dipole”
property of the “target” impact factors. The coefficient of δ(~r11′)δ(~r22′) is
written in the integral form in order to make the cancellation evident.

The term g(~r1, ~r2;~r
′
1 , ~r

′
2 ) is absent in the LO because the LO kernel in the

momentum space does not contain terms depending on all three
independent momenta simultaneously.
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General overview

In the LO g1(~r1, ~r2;~r0) = − g0(~r1, ~r2;~r0) = αsNc

2π2

~r 2

12

~r 2

10
~r 2

20

, so that the

〈~r1~r2|K̂M |~r ′
1~r

′
2 〉 coincides with the colour dipole kernel and is explicitly

conformal invariant.
In QCD the NLO kernel contains quark and gluon contributions. In ones
turn, the quark contribution is divided into two pieces: non-Abelian”
(leading in Nc) and Abelian” (suppressed by N−2

c ). Their Möbius forms
V.S. F., R. Fiore, A. Papa, 2006, 2007
agrees, with account of the ambiguity of the kernel, with the results
V.V. Kovchegov, H. Weigert, 2006,
I. Balitsky, 2006,
obtained by direct calculation in the dipole picture. The Abelian part is
greatly simplified in comparison with the momentum representation.
Moreover, this part is conformal invariant. It could be important for the
QED Pomeron.
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General overview

The most important contribution to the BFKL kernel is the gluon one. In
the momentum representation in the NLO for arbitrary momentum transfer
it is very complicated
V.S. F, R. Fiore 2005.
The Möbius form of this contribution
V.S. F, R. Fiore, A.V. Grabovsky, A. Papa, 2007
turned out strikingly simple.

However, the conformal invariance is broken not only by the terms related
to the renormalization.

Moreover, it occurred afterwards that the NLO gluon contribution to the BK
kernel
I. Balitsky, G.A. Chirilli, 2008
does not agree with the Möbius form of the same contribution to the BFKL
kernel.
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General overview

Supersymmetric Yang-Mills theories contain gluons and Maiorana
fermions in the adjoint representation of the colour group. The gluon
contribution is the same as in QCD. The fermion one can be obtained by
change of the group coefficients: nf → nMNc for the "non-Abelian" part,
and nf → −nMN3

c for the "Abelian" part; nM is the number of flavours of
Maiorana quarks. For N–extended SUSY nM = N .

At N > 1 besides quarks there are nS scalar particles; nS = 2 at N = 2

and nS = 6 at N = 4. At N = 4 β0 = 11
3 − 2

3nM − 1
6nS = 0 and αs is not

running. Nevertheless, the Möbius form of the NLO kernel
V.S. F, R. Fiore, 2007
is not conformal invariant.

However, the hope for conformal invariance still remains.
The reason is the ambiguity of the NLO kernel.
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Ambiguity of the kernel

The BFKL kernel has an evident ambiguity connected with impact factors.
The discontinuity

〈A′Ā|eY K̂
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉

remains intact under the transformation

K̂ → Ô−1K̂Ô , 〈A′Ā| → 〈A′Ā|Ô ,
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉 → Ô−1 1

~̂q 2
1 ~̂q

2
2

|B̄′B〉.

If the LO kernel is fixed, one can take Ô = 1 − αsÛ , and get

K̂ → K̂ − αs[K̂
(B), Û ].

Secondly, there is a freedom in the energy scale s0. At first sight, it can
lead to an additional ambiguity of the NLO kernel. However, it is not so.
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Ambiguity of the kernel

It was shown
V.F., 1986
that any change of the energy scale can be compensated by the
corresponding redefinition of the impact factors. In the NLO dependence
on s0 of the energy factor is cancelled by the dependence of the impact
factors, so that s0 can be taken as a free parameter. This freedom can be
used for optimization of perturbative results
D.Yu. Ivanov, A. Papa, 2006.
What about
V.F., L.N. Lipatov, 1998?
The scale transformation was associated with the change of the kernel
there.
– Because one of the impact factors was fixed. Instead of transforming
both impact factors one can compensate any change of the scale by
transformation of one of the impact factors and the kernel.

DIS 2009; APRIL 26-30; Madrid, Spain – p. 13/35



Ambiguity of the kernel

A natural choice of s0 is s0 = QAQB , where QA and QB are typical
virtualities for the impact factors ΦA′A and ΦB′B correspondingly. Let us
consider the transition from such scale to the scale depending on the
Reggeon momenta ~qAi and ~qBi, i = 1, 2, in the impact factors ΦA′A and
ΦB′B respectively:

s0 → fAfB , fA ≡ fA(~qAi), fB ≡ fB(~qBi).

With the NLO accuracy one can write

〈~qA1, ~qA2|

(
s

s0

)K̂

|~qB1, ~qB2〉 = 〈~qA1, ~qA2|F̂A

(
s

fAfB

)K̂

F̂B|~qB1, ~qB2〉,

where

F̂A =

(

1 + ln

(
f̂A

sα
0

)

K̂(B)

)

, F̂B =

(

1 + K̂(B) ln

(
f̂A

sβ
0

))

,

α+ β = 1, f̂A ≡ fA(~̂qi), f̂B ≡ fB(~̂qi). DIS 2009; APRIL 26-30; Madrid, Spain – p. 14/35



Ambiguity of the kernel

It is possible to leave one of the impact factors invariable changing the
kernel. Indeed,

F̂A

(
s

fAfB

)K̂

F̂ −1
A =

(
s

fAfB

)K̂
′

, K̂′ = F̂AK̂F̂
−1

A .

Therefore one can take

〈~qA1, ~qA2| → 〈~qA1, ~qA2|, K̂ → K̂′,
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉 → F̂AF̂B
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉,

where, with the NLO accuracy,

K̂′ = K̂ −
[
K̂(B), ln f̂AK̂

(B)
]
.

We see that the change of the energy scale can be associated with the
transformation of the kernel with the specific Û .
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Forward scattering

In the theory with nM Maiorana fermions and nS scalars in the adjoint

representation we have

g1(~r1, ~r2;~r
′

2 ) =
αs(

4e
−2C

~r 2 )Nc

2π2

~r 2

12

~r 2

22′
~r 2

12′

[
1 +

αsNc

2π

(
67

18
− ζ(2) −

5nM

9
−

2nS

9

+
β0

2Nc

~r 2

12′
− ~r 2

22′

~r 2

12

ln

(
~r 2

22′

~r 2

12′

)
−

1

2
ln

(
~r 2

12

~r 2

22′

)
ln

(
~r 2

12

~r 2

12′

)
+

~r 2

12′

2~r 2

12

ln

(
~r 2

12′

~r 2

22′

)
ln

(
~r 2

12

~r 2

12′

))]
.

Since only the integral of g0 is fixed, it can be written in different forms. One of

them is

g0(~r1, ~r2;~r0) = −g(~r1, ~r2; ρ) +
α2

sN
2

c

4π3
δ(~r0)2πζ(3) .

The function g1(~r1, ~r2; ~ρ) vanish at ~r1 = ~r2. Then, these functions turn into zero for
~ρ 2

→ ∞ faster than (~ρ 2)−1 to provide the infrared safety. The ultraviolet

singularities of this function at ~ρ = ~r2 and ~ρ = ~r1 cancel with the singularities of
g0(~r1, ~r2; ~ρ) on account of the “dipole” property of the “target” impact factors.
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Forward scattering

g2(~r1, ~r2;~r
′

1 , ~r
′

2 ) =
α2

sN
2
c

4π3

[
1

2~r 4
1′2′

(
~r 2
12′ ~r 2

21′

d
ln

(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)
− 1

)(
1 − nM +

nS

2

)

−

(
(4 − nM )

4~r 4
1′2′

~r 2
12 ~r

2
1′2′

d
−

1

4~r 2
11′ ~r 2

22′

(
~r 4

12

d
−

~r 2
12

~r 2
1′2′

))
ln

(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)

+
ln
(

~r 2

12

~r 2

1′2′

)

4~r 2
11′~r 2

22′

+
ln
(

~r 2

12
~r 2

1′2′

~r 2

11′
~r 2

22′

)

2~r 2
12′~r 2

21′

(
~r 2

12

2~r 2
1′2′

+
1

2
−
~r 2

22′

~r 2
1′2′

)
+
~r 2

12 ln
(

~r 2

12
~r 2

1′2′

~r 2

12′
~r 2

21′

)

4~r 2
11′~r 2

22′~r 2
1′2′

+
ln
(

~r 2

22′

~r 2

12

)

2~r 2
11′ ~r 2

12′

+
ln
(

~r 2

12
~r 2

1′2′

~r 2

12′
~r 2

22′

)

2~r 2
11′ ~r 2

1′2′

+
ln
(

~r 2

12
~r 2

11′

~r 2

22′
~r 2

1′2′

)

2~r 2
12′~r 2

1′2′

+
~r 2

12 ln
(

~r 2

11′

~r 2

1′2′

)

2~r 2
11′~r 2

12′ ~r 2
22′

+
~r 2

21′ ln
(

~r 2

21′
~r 2

1′2′

~r 2

12
~r 2

11′

)

2~r 2
11′~r 2

22′~r 2
1′2′

+ (1 ↔ 2)

]
, d = ~r 2

12′~r 2
21′ − ~r 2

11′~r 2
22′ .
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Forward scattering

To get a hint on possible form of the transformation consider the forward
scattering. Defining

〈~r|K̂M |~ρ〉 =

∫
〈~r1~r2|K̂M |~r ′

1~r
′

2 〉δ(~r
′

1 − ~r ′

2 − ~ρ)d2r ′

1d
2r ′

2 ,

where ~r = ~r1 − ~r2, we obtained

〈~r|K̂SUSY
M | ~r ′〉 =

αs(
4e−2C

~r 2 )Nc

2π2

∫
d~ρ ~r 2

(~r − ~ρ)2~ρ 2

(
2δ(~ρ− ~r ′) − δ(~r − ~r ′)

) [
1 +

αsNc

4π

×

(
67

9
− 2ζ(2) −

10nM

9
−

4nS

9
+ β0

~ρ 2 − (~r − ~ρ)2

~r 2
ln

(
(~r − ~ρ)2

~ρ 2

))]
+
α2

sN
2
c

4π3

×

[
δ(~r − ~r ′)6πζ(3) +

~r 2

~r ′2

(
f1(~r, ~r

′) + fSUSY
2 (~r, ~r ′) −

1

(~r − ~r ′)2
ln2

(
~r 2

~r ′2

))]
.
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Forward scattering

Here

αs(
4e−2C

~r 2
) ' αs(µ

2)

(
1 −

αs(µ
2)

4π
β0 ln

(
4e−2C

~r 2µ2

))
,

µ is the renormalization scale in the MS-scheme,

β0 =

(
11

3
−

2nM

3
−
nS

6

)
Nc,

f1 (~x, ~y) =

(
~x 2 − ~y 2

)

(~x− ~y)2 (~x+ ~y)2

[

ln

(
~x 2

~y 2

)
ln

(
~x 2~y 2 (~x− ~y)4

(~x 2 + ~y 2)4

)

+ 2 Li2

(
−
~y 2

~x 2

)]

−2 Li2

(
−
~x 2

~y 2

)
−

(

1 −

(
~x 2 − ~y 2

)2

(~x− ~y)2 (~x+ ~y)2

)[∫ 1

0

−

∫ ∞

1

]
du

(~x− ~yu)2
ln

(
u2~y 2

~x 2

)
,

fSUSY
2 (~r, ~r ′) = (1 − nM +

nS

2
)f2(~r, ~r

′) + (2nS − 3nM )

∫ ∞

0

dt
ln
∣∣∣ 1+t
1−t

∣∣∣
~r ′ 2 + t2~r 2

,
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Forward scattering

f2 (~x, ~y) =
1

8~x 2~y 2

{
(~x ~y)2

(
1 −

3

2

(
~y 2

~x 2
+
~x 2

~y 2

))
+
(
~x 2 + ~y 2

)2
− 32~x 2~y 2

}

×

∫ ∞

0

dt
ln
∣∣∣ 1+t
1−t

∣∣∣
~y 2 + t2~x 2

+
3 (~x~y)

2
− 2~x 2~y 2

16~x 2~y 2

(
ln
~x 2

~y 2

(
1

~y 2
−

1

~x 2

)
+

2

~x 2
+

2

~y 2

)
.

The BC result for the gluon contribution in the forward case is

〈~r|K̂BC | ~r ′〉 =
αs(

1
~r 2 )Nc

2π2

∫
d~ρ ~r 2

(~r − ~ρ)2~ρ 2

(
2δ(~ρ− ~r ′) − δ(~r − ~r ′)

) [
1 +

αsNc

4π

×

(
67

9
− 2ζ(2) +

11

3

~ρ 2 − (~r − ~ρ)2

~r 2
ln

(
(~r − ~ρ)2

~ρ 2

)
− 2 ln

(
(~r − ~ρ)2

~r 2

)
ln

(
~ρ 2

~r 2

))]

+
α2

sN
2
c

4π3

~r 2

~r ′2
(f1(~r, ~r

′) + f2(~r, ~r
′)) .
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Forward scattering

Thus, for the difference of the forward kernels one has

〈~r|K̂M − K̂BC | ~r ′〉 =
α2

sN
2
c

4π3

[
~r 2

(~r − ~r ′)2~r ′2
ln

(
~r 2

~r ′2

)
ln

(
~r 2~r ′2

(~r − ~r ′)4

)

+δ(~r − ~r ′)2πζ(3)
]

+
αsNc

4π

11

3
(C − ln 2) 〈~r|K̂

(B)
M | ~r ′〉 ,

〈~r|K̂
(B)
M | ~r ′〉 =

αsNc

2π2

∫
d~ρ ~r 2

(~r − ~ρ)2~ρ 2

(
2δ(~ρ− ~r ′) − δ(~r − ~r ′)

)
.

The term proportional to 11/3 is related to renormalization. In our opinion,
this term arose because the renormalization scheme used by BC is not
equivalent to conventional MS-scheme. The term with logarithms can be
eliminated by the transformation

K̂ → K̂ +
1

2

[
K̂(B), ln(~̂q 2) K̂(B)

]
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Forward scattering

applied to the forward BFKL kernel. Indeed, the direct calculation shows
that

〈~r|
[
K̂(B), ln(~̂q 2) K̂(B)

]

M
|~r

′

〉 = −
α2

sN
2
c

2π3

~r 2

(~r − ~r ′)2~r ′2
ln

(
~r 2

~r ′2

)
ln

(
~r 2~r ′2

(~r − ~r ′)4

)
.

This transformation corresponds to the change of the energy scale at
fixed value of one of the impact factors. Actually, it is of the same type as
used in
V.F., L. Lipatov, 1998:

K(~q, ~q ′) → K(~q, ~q ′) +
1

2

∫
d ~p K(B)(~q, ~p) ln

~p 2

~q 2
K(B)(~p, ~q ′).

One can come to this transformation from another side. The difference
K̂M − K̂BC has the same eigenfunctions

〈~r ′|n, γ〉 ∼ einφ~r ′

(
~r ′2
)γ

,
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Forward scattering

as the LO dipole kernel. The eigenvalues of the LO dipole kernel coincide
with the eigenvalues of the LO BFKL kernel:

ωB(n, γ) =
αsNc

π
χ(n, γ) , χ(n, γ) = 2ψ(1) − ψ(γ +

n

2
) − ψ(1 − γ +

n

2
) .

It becomes evident if we write the FBKL kernel for the forward scattering
as

〈~q|K̂(B)| ~q ′〉 =
αsNc

2π2

[
2~q ′2

(~q − ~q ′)2 ~q 2
− δ(~q − ~q ′)

∫
d~l ~q 2

(~q −~l)2~l 2

]

and compare it with the dipole kernel

〈~r|K̂d| ~r ′〉 =
αsNc

2π2

[
2~r 2

(~r − ~r ′)2 ~r ′2
− δ(~r − ~r ′)

∫
d~ρ ~r 2

(~r − ~ρ)2~ρ 2

]
.

It is worthwhile to note here that the kernel used here differs from the
usually used symmetric kernel;
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Forward scattering

the former is obtained from the latter by the transformation K̂ → ~̂q −2K̂~̂q 2.
For the non-forward case the corresponding transformation is
K̂ → (~̂q 2

1 ~̂q
2
2 )−1/2K̂(~̂q 2

1 ~̂q
2
2 )1/2. Let us stress that just the transformed kernel

can be written in the Möbius form 〈~r1~r2|K̂
(B)
M |~r ′

1~r
′
2 〉, which is invariant in

regard to the conformal transformations of the transverse coordinates and
coincides with the kernel of the colour dipole model 〈~r1~r2|K̂d|~r

′
1~r

′
2 〉. In the

forward case it means the functional identity of the LO BFKL kernel in the
momentum and Möbius coordinate representations: ~q 2〈~q|K̂(B)| ~q ′〉/~q ′2 is

represented by the same function as ~r ′2〈~r|K̂
(B)
M | ~r ′〉/~r 2.

The eigenvalues ωB(n, γ) are associated usually with the eigenfunctions

einφ~q ′

(
~q ′2
)γ−2

in the momentum space, i.e. einφ~r ′

(
~r ′2
)1−γ

. From the
functional identity of the kernels it is clear that the eigenvalues must be
the same as for einφ~r ′

(
~r ′2
)γ

, i.e. ωB(n, 1 − γ). Both requirements are
fulfilled because ωB(n, γ) = ωB(n, 1 − γ).
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Forward scattering

By the direct calculation we obtain

ωM (n, γ)−ωBC (n, γ) =
α2

s(µ
2)N2

c

2π2

[
χ′ (n, γ)χ (n, γ) +

11

3
(C − ln 2)χ(n, γ) + ζ(3)

]
,

where ωM (n, γ) − ωBC (n, γ) is the eigenvalue of the difference
K̂M − K̂BC corresponding to the eigenfunction einφ~r ′

(
~r ′2
)γ

. The first
term here can be written as

1

2
ω′

B (n, γ)ωB (n, γ) = −
1

2
[ωB ,

∂

∂γ
ωB ].

In the space of the eigenfunctions einφ~r ′

(
~r ′2
)γ

we have K̂(B) = ωB (n, γ)

and ln(~̂q 2) = −∂/∂γ, so that for the forward scattering we obtain

K̂M−K̂BC =
1

2
[K̂(B), ln(~̂q 2)K̂(B)]+K̂(B) 11

3

αs(µ
2)Nc

2π
(C − ln 2) +

α2
s(µ

2)N2
c

2π2
ζ(3).
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Forward scattering

Thus, the logarithmic term in the difference is eliminated by the kernel
transformation. The second one, as it was already pointed out, in our
opinion is related to the difference of the renormalization scheme used by
BC with conventional MS-scheme and can be eliminated by change of
the scheme. We have to note that in fact this term is present in the
difference between the eigenvalues of the NLO BFKL kernel and the
linearized forward kernel in I. Balitsky, G.A. Chirilli, 2008. In the
calculation of this difference presented there this term is erroneously
omitted at the transition from Eq. (120) to Eq. (122).

Unfortunately, we cannot find the transformation suitable to eliminate the
third term. We have to add that in the BFKL approach the term with ζ(3)
passed through a great number of verifications. In particular, this term is
necessary for the fulfillment of the bootstrap relations. Besides, it is
confirmed by the calculation of the three-loop anomalous dimensions.
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Functional identity

In N = 4 SUSY, because of the scale invariance, one can expect the
same functional identity of the NLO BFKL kernel in the momentum and
Möbius representations as in the LO. At N = 4 the coupling αs does not
run, so that β0 = 0. Moreover, fSUSY

2 = 0 in this case. In the
renormalization scheme which preserves the supersymmetry we have to
change

αs → αs

(
1 −

αsNc

12π

)
.

Finally, the kernel simplifies to

〈~r|K̂N=4
M | ~r ′〉 =

αsNc

2π2

∫
d~ρ ~r 2

(~r − ~ρ)2~ρ 2

(
2δ(~ρ− ~r ′) − δ(~r − ~r ′)

)[
1 −

αsNc

2π
ζ(2)

]

+
α2

sN
2
c

4π3

[
6πζ(3)δ(~r − ~r ′) +

~r 2

~r ′2

(
f1(~r, ~r

′) −
1

(~r − ~r ′)2
ln2

(
~r 2

~r ′2

))]
,
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Functional identity

f1 (~x, ~y) =

(
~x 2 − ~y 2

)

(~x− ~y)2 (~x+ ~y)2

[
ln

(
~x 2

~y 2

)
ln

(
~x 2~y 2 (~x− ~y)

4

(~x 2 + ~y 2)4

)
+ 2 Li2

(
−
~y 2

~x 2

)]

−2 Li2

(
−
~x 2

~y 2

)
−

(

1 −

(
~x 2 − ~y 2

)2

(~x− ~y)
2
(~x+ ~y)

2

)[∫ 1

0

−

∫ ∞

1

]
du

(~x− ~yu)
2 ln

(
u2~y 2

~x 2

)
.

Now turn to the momentum representation. Unfortunately, here the kernel
is written in the space-time dimension D = 4 + 2ε to regularize infrared
divergencies. Here we solve two problems. First, we found the explicit
form of the kernel for SUSY Yang-Mills with any N. Second, we perform
explicitly the cancellation of the infrared divergencies and write the kernel
at physical space-time dimension D = 4. It permits us to demonstrate that
the functional identity of the forward BFKL kernels in the momentum and
Möbius coordinate representations exhibited in the previous section in the
LO is preserved in the NLO in the N=4 SUSY case.

DIS 2009; APRIL 26-30; Madrid, Spain – p. 28/35



Functional identity

For the symmetric kernel we obtain

K(~q, ~q ′) = Kr
~(~q, ~q ′) + 2δ(~q − ~q ′)ω

(
−~q 2

)
,

where

ω
(
−~q 2

)
= −ḡ2

µ

(
2

ε
+ 2 ln

~q 2

µ2

)
−ḡ4

µ

[
β0

Nc

(
1

ε2
− ln 2

(
~q 2

µ2

))
+

(
1

ε
+ 2 ln

(
~q 2

µ2

))

×

(
67

9
− 2ζ (2) −

10

9
nM −

4nS

9

)
−

404

27
+ 2ζ(3) +

56

27
nM +

26

27
nS

]
,

g = gµµ
−ε

[
1 +

β0

Nc

ḡ2
µ

2ε

]
, ḡ2

µ =
g2

µNcΓ(1 − ε)

(4π)
2+ε , β0 =

(
11

3
−

2

3
nM −

nS

6

)
,
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Functional identity

Kr(~q, ~q
′) =

4 g2
µ µ

−2ε

π1+εΓ(1 − ε)

1

~k 2
+

4g4
µ µ

−2ε

π1+εΓ(1 − ε)

{ 1

~k 2

[
β0

Ncε

(
1 −

(
~k 2

µ2

)ε

(1 − ε2
π2

6
)

)

+

(
~k 2

µ2

)ε(
67

9
−
π2

3
−

10

9
nM −

4nS

9
+ ε

(
−

404

27
+

11

3
ζ(2) + 14ζ(3) +

56

27
nM

+
26

27
nS

)
− ln2 ~q 2

~q ′ 2

)]
+ f1 (~q1, ~q

′

1 ) + fSUSY
2 (~q1, ~q

′

1 )
}
, ~k = ~q − ~q ′.

The infrared singularities make difficulties for use of this representation.
However, one can cancel the divergencies and write the kernel at physical
space-time dimension D = 4 and using the integral representation for the
trajectory

ω(−~q 2) = −
ḡ2

µ ~q
2

π1+εΓ(1 − ε)

∫
d2+2εk µ−2ε

~k 2(~k − ~q)2

(
1 + ḡ2

µfω(~k,~k − ~q)
)
,

DIS 2009; APRIL 26-30; Madrid, Spain – p. 30/35



Functional identity

where

fω(~k1, ~k2) =
β0

Ncε
+

[
β0

Ncε
−

67

9
+ 2ζ (2) +

10

9
nM +

4nS

9
+ ε

(
404

27
−

11

3
ζ(2) − 6ζ(3)

−
56

27
nM −

26

27
nS

)][(~k 2
12

µ2

)ε

−

(
~k 2

1

µ2

)ε

−

(
~k 2

2

µ2

)ε]

−ln

(
~k 2

12

~k 2
1

)

ln

(
~k 2

12

~k 2
2

)

.

In the limit ε→ 0 we introduce the cut-off λ→ 0 keeping ε lnλ→ 0. Then
in the regions ~k 2 ≤ λ2 we have

fω(~k,~k − ~q) =
β0

Ncε
−

(
~k 2

µ2

)ε [
β0

Ncε
−

67

9
+ 2ζ (2) +

10

9
nM +

4nS

9

+ε

(
404

27
−

11

3
ζ(2) − 6ζ(3) −

56

27
nM −

26

27
nS

)]
,
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Functional identity

and in the region (~k − ~q)2 ≤ λ2 the same expression with the substitution
~k 2 → (~k − ~q)2. Then we see that, when the kernel K(~q, ~q ′) acts on any
function nonsingular at ~q = ~q ′, the contribution of the region ~k 2 ≤ λ2 in
the “real" part cancels almost completely the contributions of the regions
~k 2 ≤ λ2 and (~k − ~q)2 ≤ λ2 in the doubled trajectory ω(−~q 2). The only
piece which remains uncancelled is

2
ḡ4

µ

π1+εΓ(1 − ε)

∫
d2+2εk µ−2ε

~k 2
16εζ(3)

(
~k 2

µ2

)ε

θ(λ2 − ~k 2) = 2
α2

s(µ)N2
c

2π2
ζ(3).

Outside the regions ~k 2 ≤ λ2 and (~k − ~q)2 ≤ λ2 one can put ε = 0. Thus
we come to the representation of the symmetric kernel which solves the
second problem: presentation of the kernel in the physical space-time
dimension D = 4 with explicit cancellation of the infrared divergencies.
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Functional identity

K(~q, ~q ′) =
αs(~q

2)Nc

2π2

[
2

(~q − ~q ′)2
− δ(~q − ~q ′)

∫
d~l ~q 2

(~q −~l)2~l 2

]

×

[
1 +

αsNc

4π

(
67

9
− 2ζ (2) −

10

9
nM −

4nS

9

)]
+
α2

sN
2
c

4π3

[
1

(~q − ~q ′)2
β0

Nc

× ln

(
~q 2

(~q − ~q ′) 2

)
+ f1(~q, ~q

′) + fSUSY
2 (~q, ~q ′)

1

(~q − ~q ′)2
ln2

(
~q 2

~q ′2

)

+δ(~q − ~q ′)

(
β0

2Nc

∫
d~l ~q 2

(~q −~l)2~l 2
ln

(
(~q −~l)2~l 2

~q 4

)
+ 6πζ(3)

)]
.

To compare the BFKL kernel in the Möbius representation and in the
momentum representation, we have to take into account that
〈~q|K̂|~q ′〉 = ~q ′ 2K(~q, ~q ′)~q −2,
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Functional identity

so that

〈~q|K̂|~q ′〉 =
αs(~q

2)Nc

2π2

∫
d~l ~q ′ 2

(~q −~l)2~l 2

[
2δ(~q −~l) − δ(~q − ~q ′)

] [
1 +

αsNc

4π

(
67

9
− 2ζ (2)

−
10

9
nM −

4nS

9

)]
+
α2

sN
2
c

4π3

~q ′ 2

~q 2

[
1

(~q − ~q ′)2
β0

Nc
ln

(
~q 2

(~q − ~q ′) 2

)
+ f1f

SUSY
2

−
1

(~q − ~q ′)2
ln2

(
~q 2

~q ′2

)
+ δ(~q − ~q ′)

(
β0

2Nc

∫
d~l ~q 2

(~q −~l)2~l 2
ln

(
(~q −~l)2~l 2

~q 4

)

+ 6πζ(3)

)]

.

At β = 0 we have

~r ′ 2

~r 2
〈~r|K̂M |~r 2〉|β0=0 =

~q 2

~q ′2
〈~q|K̂|~q ′〉β0=0

∣∣∣∣∣
~q→~r, ~q ′→~r ′

.
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Summary

The NLO BFKL kernel is not unambiguously defined.

The ambiguity can be used

for restoration of the conformal invariance of the BFKL kernel at
N = 4 SUSY Yang-Mills theory

for elimination of the discrepancy between the BFKL and BK
kernels.

There are two possible sources of the ambiguity: the impact factors
and the energy scale.

For the forward scattering the discrepancy can be partly removed.

The forward BFKL kernel has a simple form in the momentum
representation at the physical space-time dimension.

This form is the same as the Möbius for of the kernel in the coordinate
representation.
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