Hadronization from DIS at CLAS

K. Hicks* (CLAS Collaboration)
DIS 2009 Conference, Madrid
April 27, 2009

*working with Aji Daniel and the eg2 run-group.
Introduction

- Goal: measure observables of quark propagation through cold QCD matter.
- Pions: PhD work of H. Hakobyan (Yerevan)
- Kaons: work of postdoc A. Daniel (Ohio)
 - Do kaons hadronize differently than pions?
 - Heavy s-quarks could affect the hadronization.
 - No difference between π^+, π^- or π^0.
 - New: K^0 attenuation ratios (not done by HERMES).
Relevance to RHIC

Relativistic Heavy-Ion Collisions

Deep Inelastic Scattering

These experiments try to recreate conditions of the early universe.

Initial quark energy is known
Properties of medium are known

Ken Hicks, Ohio U.

DIS 2009, April 27

Graphics by Will Brooks
Observables

Hadronic multiplicity ratio:

\[R^h_M(z, \nu) = \frac{\left\{ \frac{N_h(z, \nu)}{N^DIS_e(\nu)} \right\}_A}{\left\{ \frac{N_h(z, \nu)}{N^DIS_e(\nu)} \right\}_D} \]

Transverse momentum:

\[\Delta p_T^2 = \left\langle p_T^2 \right\rangle^DIS_A - \left\langle p_T^2 \right\rangle^DIS_D \]

Binning:

- \(Q^2 \) (range 1.0-2.5 GeV\(^2\))
- \(\nu \) (range 2.6-4.3 GeV)
- \(z \) (range 0.1-1.0)
Theoretical Models

- No (dynamical) lattice calculations yet.
- Accardi et al. (nucl-th/0211011):
 - gluon radiation and absorption included.
 - good agreement with HERMES data.
 - increased *deconfinement* in nuclei.
- Many other phenomenological models.
Inside the Models

HERMES: K⁺ and K⁻ different.

Figure 6: Nuclear attenuation of a hadron h: the virtual photon γ^* interacts with a quark q at a longitudinal coordinate y; the quark turns into a “prehadronic” state h_* at position y' and the hadron h is formed at y''. Each state interacts with the surrounding nucleons with a cross-section σ_q, σ_*, and σ_h, respectively.
CLAS – the CEBAF Large Acceptance Spectrometer

Drift Chambers
35,000 wires
$\sigma_R = 350 \mu m$

Superconducting Toroidal Magnet
$\int Bdl \equiv 1.7 T\cdot m$

Cerenkov Counters
216 channels
99.5% efficient over 50 m2 area

Time of Flight Counters
500+ channels, 145 ps resolution

Electromagnetic Shower Calorimeters
1700+ channels
$\sigma/E = 10%/E^{0.5}$

electron beam direction
eg2: pion attenuation

\[2.20 < \sqrt{s} < 3.00 \quad 1.25 < Q^2 < 1.50 \mid \pi^+ \]

H. Hakobyan analysis: one of \(\sim 50 \) bins
Examples of multi-variable (preliminary) CLAS data

- $0.60 < Z_\pi < 0.80$ $1.85 < Q^2 < 2.40$ $|\pi^+|
- 2.20 < v < 3.00$ $0.60 < Z_\pi < 0.80$ $|\pi^+|
- 3.50 < v < 4.00$ $1.25 < Q^2 < 1.50$ $|\pi^+|
- Cronin effect for Lead ($Z_\pi > 0.2$)

- v dependence
- Q^2 dependence
- p_T^2 dependence
- Z_π dependence
Quarks lose energy by *gluon emission* as they propagate within a medium.

- This energy loss is manifested by Δp_T^2.
- Δp_T^2 gives the *production time* τ_p.

- $\Delta E \sim L$ dominates in QED.
- $\Delta E \sim L^2$ dominates in QCD?

\[\frac{dE}{dx} \approx \frac{\alpha_s}{\pi} N_c \langle p_T^2 \rangle_L \]

Medium-stimulated loss calculation by BDMPS.
eg2: pion p_T broadening

H. Hakobyan analysis

Δp_T^2 vs ν (GeV)

1 $< Q^2 < 2$ 0.5 $< Z_{\pi^+} < 0.6$ π^+

ν (GeV)

Ken Hicks, Ohio U. DIS 2009, April 27
A-dependence of Δp_T^2

Only statistical errors shown

Only one of many bins of CLAS data

Ken Hicks, Ohio U.
DIS 2009, April 27
K^0 from $M(\pi^+\pi^-)$ at $z=0.55$

LD$_2$ target

Fe target
z-dependence of K^0 peak

(CLAS PRELIMINARY)

Multiplicity
K0 counts normalized by dis e-

(C, Fe, Pb, D2)
K^0 Multiplicity Ratio

K^0 hadronization

(CLAS PRELIMINARY)

Multiplicty ratios

$z = \frac{E_h}{\nu}$

Ken Hicks, Ohio U.

DIS 2009, April 27
K^0 broadening of $<p_t^2>$

(CLAS PRELIMINARY)
K⁰ Cronin Effect

Cronin effect

(CLAS PRELIMINARY)
Examples of Experimental Data and Theoretical Predictions

Bins in yellow accessible at 5 GeV at CLAS
Summary

- There is good statistical precision of the pion data at 5 GeV.
 - Hadronization ratios, Δp_T^2, and Cronin effect.
 - Results are still preliminary but nearly final.
- There is modest statistical precision for the K^0 data at 5 GeV.
 - From these data, we hope to learn about the quark mass dependence of hadronization.
- The JLab 12 GeV upgrade creates new possibilities to study quark-matter propagation.
Backup Slides

Multiplicity
K0 counts normalized by dis e-

Multiplicity vs. \(P_t^2 \)

- C
- Fe
- Pb
- D2

C, Fe, Pb, D2
• Two targets in the beam simultaneously
• 2 cm LD2, upstream
• Solid target downstream
• Six solid targets:
 - Carbon
 - Aluminum (2 thicknesses)
 - Iron
 - Tin
 - Lead
 - Al + empty target
Cronin Effect

Theoretical prediction:

Probes reaction mechanism

CLAS preliminary data
z=0.5 and 0.7

DIS 2009