'Transverse' SDMEs in exclusive electroproduction of ρ^0

DIS 2009, Madrid

Ami Rostomyan

(on behalf of the collaboration)
exclusive meson production

factorization in collinear approximation -Collins, Frankfurt, Strikman (1997)-

\[A \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2/\mu^2) \otimes \Phi(z; \mu^2) \]

at leading-twist: \(H, E, \tilde{H}, \tilde{E} \)
- \(H \) and \(\tilde{H} \) conserve the nucleon helicity
- \(E \) and \(\tilde{E} \) describe the nucleon helicity flip
- quantum numbers of final state selects different GPDs

vector mesons (\(\gamma^*_L \rightarrow \rho_L, \omega_L, \phi_L \)): \(H, E \)
pseudoscalar mesons (\(\gamma^*_L \rightarrow \pi, \eta \)): \(\tilde{H}, \tilde{E} \)

factorization for \(\sigma_L \) (and \(\rho_L, \omega_L, \phi_L \)) only
- \(\sigma_L - \sigma_T \) suppressed by \(1/Q \)
- \(\sigma_T \) suppressed by \(1/Q^2 \)
exclusive meson production

modified perturbative approach

\[A \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2/\mu^2)) \otimes \Phi(z, k_\perp; \mu^2) \]

at leading-twist: \(H, E, \tilde{H}, \tilde{E} \)
- \(H \) and \(\tilde{H} \) conserve the nucleon helicity
- \(E \) and \(\tilde{E} \) describe the nucleon helicity flip

quantum numbers of final state selects different GPDs
- vector mesons \((\gamma^*_L \rightarrow \rho_L, \omega_L, \phi_L)\):
 - \(H, E \)

factorization for \(\sigma_L \) (and \(\rho_L, \omega_L, \phi_L \)) only
- \(\sigma_L - \sigma_T \) suppressed by \(1/Q \)
- \(\sigma_T \) suppressed by \(1/Q^2 \)

power corrections: \(k_\perp \) is not neglected
- regulate the singularity in the transverse amplitude
- \(\gamma^*_T \rightarrow \rho^0_T \) transitions can be calculated (model dependent)
- \(\rho^0_T \): contributions from \(\tilde{H} \) and \(\tilde{E} \)
advantage of exclusive ρ^0 production

\[J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \, x[H_q(x, \xi, t) + E_q(x, \xi, t)]\]

\[J_g = \frac{1}{2} \lim_{t \to 0} \int_{0}^{1} dx \, [H_g(x, \xi, t) + E_g(x, \xi, t)]\]
advantage of exclusive ρ^0 production

Ji relation

\[J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \ [H_q(x, \xi, t) + E_q(x, \xi, t)] \]

\[J_g = \frac{1}{2} \lim_{t \to 0} \int_{0}^{1} dx \ [H_g(x, \xi, t) + E_g(x, \xi, t)] \]

exclusive ρ^0 sensitive to $H^{q,g}$ and $E^{q,g}$ at the same order in α_s

the only process where the gluon contribution enters in LO

E_g is completely unknown
advantage of exclusive ρ^0 production

Ji relation

$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x [H_q(x, \xi, t) + E_q(x, \xi, t)]$$

$$J_g = \frac{1}{2} \lim_{t \to 0} \int_{0}^{1} dx [H_g(x, \xi, t) + E_g(x, \xi, t)]$$

exclusive ρ^0 sensitive to $H^{q,g}$ and $E^{q,g}$ at the same order in α_s

the only process where the gluon contribution enters in LO

E_g is completely unknown

a cross section asymmetry with respect to the transverse target polarization

$$A_{UT}^{v*}(\phi, \phi_s) \propto \frac{\text{Im}(\mathcal{E}^*_\rho \mathcal{H}_\rho)}{|\mathcal{H}_\rho|^2} \propto \frac{\mathcal{E}_\rho}{\mathcal{H}_\rho}$$

depends linearly on the helicity-flip GPDs $E^{q,g}$

no kinematic suppression $E^{q,g}$ with respect to $H^{q,g}$
vector meson polarization

\[\gamma^* \text{ and } \rho^0 \text{ have the same quantum numbers} \]

- helicity transfer \(\gamma^* \rightarrow \rho^0 \)
- signature: \(\rho^0 \) production angular distribution

the spin-state of the \(\rho^0 \) is reflected in the orbital angular momentum of the decay particles

- \(\rho^0 \) (in the rest frame): \(J = L + S = 1 \)
- \(\pi \): \(S = 0, \ L = 1 \)
- signature: decay angular distribution
the angular distribution

Correlations are reflected in the ρ^0 production and decay angular distributions W:

$$\frac{d\sigma}{dx_B \, dQ^2 \, dt \, d\phi_s \, d\phi \, d\cos \vartheta \, d\varphi} \sim \frac{d\sigma}{dx_B \, dQ^2 \, dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi)$$
the angular distribution

correlations are reflected in the ρ^0 production and decay angular distributions W

$$\frac{d\sigma}{dx_B dQ^2 dt d\phi_S d\phi d\cos\vartheta d\varphi} \sim \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_S, \phi, \cos\vartheta, \varphi)$$
the angular distribution

correlations are reflected in the ρ^0 production and decay angular distributions W

\[
\frac{d\sigma}{dx_B dQ^2 dt d\phi_s d\phi d\cos \theta d\varphi} \sim \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \theta, \varphi)
\]

decomposed:

\[
W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}
\]
the angular distribution

Correlations are reflected in the ρ^0 production and decay angular distributions W

$$\frac{d\sigma}{d x_B \, dQ^2 \, dt \, d\phi_s \, d\phi \, d\cos \vartheta \, d\varphi} \sim \frac{d\sigma}{d x_B \, dQ^2 \, dt} \, W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi)$$

Decomposed:

$$W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}$$

Parameterized by helicity amplitudes $T_{\mu\lambda}^{\nu\sigma}$:

- Diehl notation (2007)-
the angular distribution

correlations are reflected in the ρ^0 production and decay angular distributions W

\[
\frac{d\sigma}{dx_B \, dQ^2 \, dt \, d\phi_s \, d\phi \, d\cos \vartheta \, d\varphi} \sim \frac{d\sigma}{dx_B \, dQ^2 \, dt} \cdot W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi)
\]

decomposed:

\[
W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}
\]

parameterized by helicity amplitudes $T^{\nu\sigma}_{\mu\lambda}$:

spin-density matrix elements (SDMEs):

\[
\rho^{\nu\nu'}_{\mu\mu'} \propto \sum_{\sigma} T^{\nu\sigma}_{\mu\lambda} (T^{\nu'\sigma'}_{\mu'\lambda'})^*
\]

- Diehl notation (2007) -
the definition of the asymmetry

\[A_{UT}^\gamma(\phi, \phi_s) = \frac{\sigma_{UT}(\phi, \phi_s)}{\hat{\sigma}_{UU}} \]

\(\hat{\sigma}_{UU} \) - no \(\phi \)-dependence

the cross section can be separated into angle-independent and angular dependent parts

\[A_{UT}^\gamma(\phi, \phi_s) = \frac{W_{UT}(\phi, \phi_s)}{W_{UU}} \]

theoretically at leading order in \(1/Q (\gamma^*_L \rightarrow \rho^0_L) \):

\[A_{UT}^\gamma(\phi, \phi_s) = \frac{\text{Im} n_{00}^{00}}{u_{00}^{00}} \]

experimentally:

\[A_{UT}^\gamma(\phi, \phi_s) = \frac{\text{Im}(n_{++}^{00} + \epsilon n_{00}^{00})}{u_{++}^{00} + \epsilon u_{00}^{00}} \]

\(n_{00}^{00} \) and \(n_{++}^{00} \) are expected to be negligible
exclusive ρ^0 sample

$\rho^0 \rightarrow \pi^+ + \pi^-$

the invariant mass distribution:
$$M_{2\pi} = \sqrt{(p_{\pi^+} + p_{\pi^-})^2}$$

no recoil proton detection

for exclusive elastic scattering:
$$\Delta E = (M_x^2 - M^2)/(2M) = 0$$

only little energy transferred to the target
$$t = (q - v)^2$$

transverse four-momentum transfer is often used
$$t' = t - t_0$$

main contribution at small values of ΔE and t'
$$\Delta E < 0.6 \text{ GeV and } t' < 0.4 \text{ GeV}^2$$
exclusive ρ^0 sample

$\rho^0 \rightarrow \pi^+ + \pi^-$

the invariant mass distribution:

$$M_{2\pi} = \sqrt{(p_{\pi^+} + p_{\pi^-})^2}$$

no recoil proton detection

for exclusive elastic scattering:

$$\Delta E = (M_x^2 - M^2)/(2M) = 0$$

only little energy transferred to the target

$$t = (q - v)^2$$

transverse four-momentum transfer is often used

$$t' = t - t_0$$

main contribution at small values of ΔE and $t'$$$

$$\Delta E < 0.6 \text{ GeV and } t' < 0.4 \text{ GeV}^2$$

non-exclusive events: $\Delta E > 0$

contribute due to the experimental resolution and restricted acceptance

estimate the semi-inclusive background contamination with PYTHIA

events produced in non-exclusive processes as an estimate of the background contamination: 11%
'transverse' SDMEs

unpolarized SDMEs $u_{\mu\mu'}^{\nu\nu'}$:
- already measured by various experiments
- from HERMES:
 see talk by Wolf-Dieter Nowak

transverse SDMEs $n_{\mu\mu'}^{\nu\nu'}$ and $s_{\mu\mu'}^{\nu\nu'}$:
- measured for the first time
 - average kinematics:
 - $\langle -t' \rangle = 0.13$ GeV2
 - $\langle x_B \rangle = 0.09$
 - $\langle Q^2 \rangle = 2.0$ GeV2
 - related to the proton helicity-flip amplitude
 - suppressed by a factor $\sqrt{-t/2M_p}$
’transverse’ SDMEs

\[\rho_{\mu\mu'}^{\nu\nu'} , \lambda\lambda' \propto \sum_{\sigma} T_{\mu\lambda}^{\nu\sigma} (T_{\mu'\lambda'}^{\nu'\sigma})^* \]

class I: \(s \)-channel helicity conservation
\(\nu = \mu, \quad \nu' = \mu' \)
- large unpolarized equivalents
 (0.4 \(- 0.5\))
- \(\text{Im}(n_{++}^{00} + c n_{00}^{00}) \): consistent with zero
- \(\text{Im} s_{++}^{-} \) and \(\text{Im}(s_{0+}^{0+} - s_{0+}^{-0}) \): deviate from 0 by 2.5\(\sigma \)

class II: single helicity flip
\(\nu \neq \mu, \quad \nu' \neq \mu' \)
- most of elements consistent with 0
- \(\text{Im} n_{0+}^{00} \): 2.5\(\sigma \) deviation from 0
- polarized equivalent of \(\text{Im} u_{0+}^{00} \)

class III: double helicity flip
\(\nu \neq \mu, \quad \nu' \neq \mu' \)
- no \(s \)-channel helicity violation
(un)natural-parity exchange

- **natural parity**
 - related to GPDs H and E

- **unnatural parity**
 - related to GPDs \bar{H} and \bar{E}

- UPE amplitudes are expected to be smaller than the NPE amplitudes
 - expected $s_{\mu\nu'}^{\nu\mu'} < n_{\mu\mu'}^{\nu\nu'}$ (if identical indices)

- exceptions are not excluded
(un)natural-parity exchange

- **Natural parity**
 - related to GPDs H and E

- **Unnatural parity**
 - related to GPDs \bar{H} and \bar{E}

- UPE amplitudes are expected to be smaller than the NPE amplitudes

- expected $\delta^{\nu\nu'}_{\mu\mu'} \leq n^{\nu\nu'}_{\mu\mu'}$ (if identical indices)

- exceptions are not excluded

- s_{-+} and $\text{Im} s_{00+}$ involve
 - the biggest NPE amplitudes N_{-+} or N_{00+}
 - the biggest UPE amplitude $U_{+++]$

- correspond to the pion-exchange in the Regge theory

- **Manaenkov (2008)**

- **HERMES PRELIMINARY**
 - 8.1 % scale uncertainty
 - dominant transitions

- **Ami Rostomyan** – p.9
transverse target-spin asymmetry

leading transition: $\gamma_L^* \rightarrow \rho_L^0$:

$$A_{UT}(\phi, \phi_s) = \text{Im}\left(\frac{n_{00}^{00} + \epsilon n_{00}^{00}}{u_{++}^{00} + \epsilon u_{00}^{00}}\right)$$

GPD parameterizations are needed

$$A_{UT} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g}$$

- Goeke, Polyakov, Vanderhaeghen (1999)-
- Ellinghaus, Nowak, Vinnikov, Ye (2004)-
- Goloskokov, Kroll (2007)-
- Diehl, Kugler (2008)-
transverse target-spin asymmetry

leading transition: $\gamma_L^* \to \rho_0^L$:

$$A_{UT}^\gamma(\phi, \phi_s) = \frac{\text{Im}(n^{00}++ + \epsilon n^{00}_{00})}{u^{00}++ + \epsilon u^{00}_{00}}$$

GPD parameterizations are needed

$$A_{UT} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g}$$

- Ellinghaus, Nowak, Vinnikov, Ye (2004)

parameterizations for H^q, $H^\bar{q}$, H^g

E^q is related to the total angular momenta J^u and J^d

predictions for $J^d = 0$

$E^\bar{q}$ and E^g are neglected

data favors positive J^u

statistics too low to reliably determine the value of J^u and its uncertainty within the statistical uncertainty in agreement with theoretical calculations indication of small E^g and $E^\bar{q}$?

- Ami Rostomyan- – p.10
transverse target-spin asymmetry

leading transition: $\gamma^*_L \rightarrow \rho^0_L$:

$$A^\gamma_\gamma^*(\phi, \phi_s) = \frac{\text{Im}(n^{00}_{++} + \epsilon n^{00}_{00})}{u^{00}_{++} + \epsilon u^{00}_{00}}$$

GPD parameterizations are needed

$$A_{UT} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g}$$

general predictions for mean kinematics larger than the average HERMES kinematics

-Golesskovich, Kroll (2007)-

- power corrections
- $\gamma^*_L \rightarrow \rho^0_L$ and $\gamma^*_T \rightarrow \rho^0_T$ are considered
- predictions for transverse SDMEs and asymmetries
- can be compared to the HERMES at larger values of Q^2
 - data binned in Q^2, x_B and t' will be published soon
transverse target-spin asymmetry

leading transition: $\gamma_L^* \rightarrow \rho_L^0$:

$$A_{UT}^{\gamma^*}(\phi, \phi_s) = \frac{\text{Im} \left(n_{00}^{00} + \epsilon n_{00}^{00} \right)}{u_{00}^{00} + \epsilon u_{00}^{00}}$$

GPD parameterizations are needed

$$A_{UT} \propto \frac{E}{H} \propto \frac{E_q + E_g}{H_q + H_g}$$

predictions for mean kinematics larger than the average HERMES kinematics

-Goloskokov, Kroll (2007)-

-power corrections

$\gamma_L^* \rightarrow \rho_L^0$ and $\gamma_T^* \rightarrow \rho_T^0$ are considered

-predictions for transverse SDMEs and asymmetries

-can be compared to the HERMES at larger values of Q^2

-data binned in Q^2, x_B and t' will be published soon

-Diehl, Kugler (2008)-

-parameterizations for H_q, \bar{q}, g and E_q, \bar{q}, g

-asymmetry predictions

-NLO corrections are computed

-large size of the NLO corrections

-Ivanov (2008)-

-another attempt to resume the NLO correction

-small corrections to the LO
summary

waiting for data with higher statistics and theoretical models