

DIS 2009

High p_T Jet Studies with CMS

On behalf of the CMS Collaboration Andreas Oehler University of Karlsruhe (KIT)

XVII International Workshop on Deep-Inelastic Scattering and Related Subjects DIS 2009, 26-30 April 2009, Madrid

- QCD Cross Section at the LHC
- Jet Measurement at CMS
 - Jet Energy Calibration
 - Jet p_T Response

- QCD & New Physics with High $p_{_{\rm T}}$ Jets

- Inclusive Jets
- Dijet Mass Cross Section
- Dijet Angular Distributions
- Jet Shapes
- Outlook

Introduction

DIS 2009

Jet Measurement

- Jets are sprays of particles, collimated due to QCD interaction.
- Jet algorithms define an unambigous way to combine particles to one fourvector:
 - Cone algorithms
 - Successive recombination algorithms
- **Input** to the algorithms are fourvectors from:
 - Calorimetric energy depositions
 - Tracks
 - Particle or energy flow reconstructed objects
 - Simulated or generated particles

FastJet: http://www.lpthe.jussieu.fr/~salam/fastjet/

Jet Energy Calibration

- Default: correction to particle level
- Factorized approach (like e.g. CDF)
 Offset correction (remove pile-up and noise contribution)
 - **Relative correction** (flattens the jet response in η)
 - **Absolute correction** (flattens the jet resonse in p_T)
- Data driven approach:
 - Di-jet balancing (relative correction)
 - γ+jet, Z+jet balancing (absolute correction)
- Optional corrections:
 - Electromagnetic fraction dependence
 - Flavour dependence
 - Parton level
 - Underlying event
- Systematic uncertainty ~10% at startup, improving to ~5% with first data.

Inclusive Jet Cross Section

- Important jet comissioning measurement.
- Even a small amount of data is enough to exceed the Tevatron \textbf{p}_{T} reach (~700GeV).
- Sensitive to contact interactions: with 10pb⁻¹ @ 14TeV a discovery beyond the Tevatron limit (2.7 TeV) is possible.
- The jet energy scale is the dominating experimental systematic uncertainty.
- Could be used to constrain PDFs, which requires profound knowledge of systematic uncertainties.

Jet Pt Resolution

- Finite detector resolution affects measurements. The jet p_T resolution is a leading systematic effect for e.g. inclusive jets after jet energy scale and luminosity.
- Can be determined from MC truth matching (MC tuned to data), or by direct measurement from dijet events (Asymmetry Method).
- Jet p_{T} resolution usually parametrized by

$$\sigma(p_{\mathrm{T}}) = p_{\mathrm{T}} \cdot \sqrt{C^2 + \frac{S^2}{p_{\mathrm{T}}} + \frac{N^2}{p_{\mathrm{T}}^2}}$$

- Fairly independent of the specific jet algorithm.
- Can use combined calorimetric+track information (compensation correction) to improve the jet energy resolution

State Unsmearing Procedure 1/2

Inclusive jet spectrum needs a correction for the finite jet $p_{\scriptscriptstyle T}$ resolution

- Generator level only.
- Artificially smear jets by Gaussian with an arbitrary (but reasonable) width.
- Apply Ansatz Method for unsmearing.
- Method corrects p_{τ} smearing effects on steeply falling spectrum.

CIT Unsmearing Procedure 2/2

- Ansatz Method can correct finite resolution effects on the steeply falling spectrum
- However a good knowledge of the resolution is required
- A wrong assumption of the resolution can shift the final spectrum easily by some percent

Theoretical Uncertainties

 Dominant theoretical uncertainties come from the uncertainties of the parton distribution functions and scale uncertainties in the calculations

 Probing pQCD with high p_T jets means mainly comparing measurements to calculations in NLO. This procedure currently involves uncertainties from the non-perturbative corrections needed (uncertainty about 15% at low pt, reduced to almost zero at 1 TeV).

27.04.2009 DIS 2009 10/1	27.04.2009	Andreas Oehler DIS 2009	10/15
--------------------------	------------	----------------------------	-------

Dijet Mass Cross Section

- Invariant mass of 2 leading jets.
- The jet energy scale is the dominant experimental systematic uncertainty
- Sensitive to objects decaying into 2 jets (**dijet resonances:** q*, Z', etc.)
- With 100 pb⁻¹ a 2 TeV excited quark can be clearly seen (Tevatron excludes: M<0.87 TeV)

Dijet Angular Distributions

- The dijet angular distributions are sensitive to the production process:
 - QCD dominated by t-channel scattering
 - Resonance decays and contact interations tend to be more isotropic
- The dijet angular distributions will confirm any deviation from QCD observed in the dijet mass spectrum

Dijet Ratio

- The dijet ratio N(|n|<0.7)/N(0.7<|n|<1.3) vs mass is a robust way to identify deviations from QCD.
- Sensitivity to contact interactions (discovery up to Λ=6.8 TeV with 100pb⁻¹ @ 14 TeV)
- Sensitivity to dijet resonances. At higher luminosity spin measurement is also feasible.
- Ideal measurement for startup. JES and luminosity uncertainties are largely cancelled.

Jet Shapes

For Hadronic Event Shape studies see talk of M. Weber.

- Jet shape measurements can be used to discriminate between different underlying event models.
- Can be used to distinguish gluon initiated jets from quark jets.

- Measurement of the average integrated (differential) energy flow inside jets.
- Jet shape measurements can be used to test the showering models in the MC generators.

Outlook

- Jet final states are critical both for studying the detector performance and for the "re-discovery" of the Standard Model at the LHC.
- LHC p-p collisions will probe a previously unexplored kinematic region and a small amount of early data will be enough for QCD measurements exceeding the p_{τ} reach of the Tevatron.
- Jet measurements are sensitive to new physics. Contact interactions and resonances decaying into dijets can be discovered early on, even with 10% JES uncertainty at startup.
- Precision QCD measurements will require much more data and effort to constrain the systematic uncertainties.
- Establishing the JES with a small systematic uncertainty (~1%) is a challenging task which will require a huge effort and a large integrated luminosity.

BACKUP SLIDES

Unsmearing Procedure

Motivation

The **observed** cross section is higher than the true one due to the falling shape of the spectrum and the finit p_{T} resolution. More events migrate into a bin of measured p_{T} than out of it.

Unsmearing steps:

- Analytical expression of the p_{τ} resolution
- Ansatz function with free parameters to be determined by the data
- Fitting the data with the Ansatz function smeared with p_{τ} resolution.
- Unsmearing correction calculated bin by bin.

$$R(p_{\mathrm{T}}', p_{\mathrm{T}}) = \frac{1}{\sqrt{2\pi}\sigma(p_{\mathrm{T}}')} \exp\left[-\frac{(p_{\mathrm{T}}' - p_{\mathrm{T}})^2}{2\sigma^2(p_{\mathrm{T}}')}\right]$$

$$f(p_{\mathrm{T}}) = N \cdot p_{\mathrm{T}}^{-a} \cdot \left(1 - \frac{2\cosh(y_{\min})p_{\mathrm{T}}}{\sqrt{s}}\right)^{b} \exp(-\gamma p_{\mathrm{T}})$$

•
$$F(p_{\mathrm{T}}) = \int_0^\infty f(p_{\mathrm{T}}') R(p_{\mathrm{T}}', p_{\mathrm{T}}) dp_{\mathrm{T}}'$$

•
$$C_{bin} = \frac{\int_{bin} f(p_{\rm T}) dp_{\rm T}}{\int_{bin} F(p_{\rm T}) dp_{\rm T}}$$

Non Perturbative Corrections

- Correction factor for non perturbative effects, for which NLO calclations do not account for
- PYTHIA: V6.4, D6T, CTEQ6L1
- HERWIG++: default tune, MRST2001

