

Top Quark Results at the Tevatron

Ernest Aguiló

York University

on behalf of the CDF & DØ collaborations

DIS2009, Madrid, April 27th 2009

Outline

- Introduction & motivation
- Top pair results:
 - Mass
 - Cross section
 - Properties
- Single top observation
- Summary

- Top quark discovery in 1995 by CDF & DØ
- Mass-• muon Heaviest elementary particle neutrino V_u Important SM parameter — W* LEP2 and Tevatron (prel.) ---- LEP1 and SLD 80.5-68% CL antiproton bean proton beam [/08] ^{80.4} ī W-80.3 ٧. neutrino 175 200 150 m, [GeV] Jet 2(b) electron
- Cross section
- Properties & other

- Top quark discovery in 1995 by CDF & DØ
- Mass

- FB asymmetry
- Properties & other

electron

muon

- Top quark discovery in 1995 by CDF & DØ
- Mass •
- Cross section •
- Properties & Beyond SM •

 - Lifetime

 - Non SM decay
 - 4th generation
 - FCNC, W'
 - Charged Higgs H⁺

- Single top electroweak production mechanism predicted by SM
- Evidence in 2006
- Very Challenging:
 - High backgrounds & few jets
 - Need sophisticated discriminants
- Interest:
 - Access to Wtb coupling:
 - Direct measurement of $|V_{tb}|$
 - Top properties
 - Background to WH associated production
 - Sensible to New Phenomena:
 - FCNC, t', W', H⁺,

Introduction: the Tevatron

Introduction: the Tevatron

Introduction: the Detectors

• Top decays:

 W^+

t

- Top pair signatures:
 - lepton + jets

 $l^+, q \rightarrow jet$

 $v, \overline{q}' \rightarrow \text{jet}$

 $b \rightarrow b$ -jet

≫met

 W^+

t

- Top pair signatures:
 - lepton + jets
 - dilepton

 $l^+, q \rightarrow jet$

 $v, \overline{q}' \rightarrow \text{jet}$

 $b \rightarrow b$ -jet

≫met

 W^+

t

 $l^+, q \rightarrow \text{jet}$

 $v, \overline{q}' \rightarrow \text{jet}$

 $b \rightarrow b$ -jet

≫met

• Top decays:

- Top pair signatures:
 - lepton + jets
 - dilepton
 - all jets

• Top decays:

- Top pair signatures:
 - lepton + jets
 - dilepton
 - all jets

Top Pair Branching Fractions

04/27/09

E Aguiló (York U)

Introduction: B-Tagging

- How to identify b-jets: apply b-tagging
 - B mesons longer lifetime secondary vertex
 - b larger mass
 - Large track
 IP significance

Introduction: B-Tagging

Loose SecVtx

How to identify b-jets: apply b-tagging

0.2

SecVtx Tag Efficiency for Top b-Jets 0.7 0.6 0.5 0.4 0.3

Introduction: Backgrounds

- Z+jets, diboson (WW,ZZ,WZ)
- Top pair is a background to single top!

Introduction: Backgrounds

04/27/09

04/27/09

- Matrix Element with in-situ JES calibration in Lepton+jets
 - Matrix Element

– Event by event likelihood vs. $m_{t} \& \Delta JES$ (fit to W mass)

$$P(m_t, \Delta JES) = f_{top} \cdot P_{top}(m_t, \Delta JES) + f_{bkg} \cdot P_{bkg}(\Delta JES)$$

Top mass at likelihood maximum

• Matrix Element with in-situ JES calibration in Lepton+jets

- CDF(3.2 fb⁻¹): 172.1± 0.9(stat) ±0.7(jes)±1.1(syst) GeV

- DØ (3.6 fb⁻¹): 173.7±0.8(stat)±1.6(syst⊕jes) GeV

- Dilepton (eµ) with ME by DØ with 3.6 fb⁻¹
 174.8 ±3.3 (stat) ±2.6 (syst) GeV
- Dilepton with template fits by DØ with 1.0 fb⁻¹
 - Neutrino weighting (II,I+t):
 - 176.0 ±5.3 (stat) ±2.0 (syst) GeV
 - Matrix weighting (II):

175.2 ±6.1 (stat) ±3.4 (syst) GeV

• Combination:

174.7 ±2.9 (stat) ±2.4 (syst) GeV

- All jets by CDF with 2.9 fb⁻¹:
 - Selection with NN
 - In-situ JES calibration
 - Extract m_{t} from x^{2} of 6 jets
 - Mass template fits

 $174.8 \pm 1.7(\text{stat}) \pm 1.6(\text{JES})^{+1.2}$ (syst)

04/27/09

04/27/09

04/27/09

- Lepton + jets by CDF with 2.7 fb⁻¹ ($@m_{+}=175$ GeV):
 - Using b-tagging
- $\sigma = 7.2 \pm 0.4(\text{stat}) \pm 0.5(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb}$
 - Using topological NN

 $\sigma = 7.1 \pm 0.4$ (stat) ± 0.4 (syst) ± 0.4 (lumi) pb

- Largest systematics:
 - JES (3%)
 - MC HF correction factor (3%)
 - B-tagging on MC (5%)
 - Luminosity (6%)
- Get rid of luminosity systematic:
 - Measure ratio to Z cross-section compare to theory

 σ = 7.0 ± 0.4(stat) ± 0.6(syst) ± 0.1(th) pb

 $\sigma = 6.9 \pm 0.4$ (stat) ± 0.4 (syst) ± 0.1 (th) pb

Nevent

DØ Runll preliminary (1.0 fb⁻¹)

- DØ combination of I+jets, I+I & τ +I: •
 - Extract mass comparing to theory

04/27/09

190

τ+lepton

• W helicity:

- W helicity:
 - $f_{+} + f_{0} + f_{-} = 1$

- Likelihood fit by DØ (2.2-2.7 fb⁻¹):

 $f_0 = 0.490 \pm 0.106 \text{ (stat)} \pm 0.085 \text{ (syst)}$

 $f_{+} = 0.110 \pm 0.059 \text{ (stat)} \pm 0.052 \text{ (syst)}$

- Constraining $f_0 = 0.7$

 $f_{+} = 0.019 \pm 0.031 \text{ (stat)} \pm 0.047 \text{ (syst)}$

By CDF (1.9 fb⁻¹):

Resonant top pair production by DØ with <u>3.6 fb⁻¹ (CDF 1 fb⁻¹):</u>

• 4th generation quark by CDF with 2.8 fb⁻¹:

Exclude M₊ < 311 GeV @ 95% C.L.

04/27/09

Single Top

- By CDF (3.2 fb⁻¹) and DØ (2.3 fb⁻¹)
 - CDF: $m_{t} = 175 \text{ GeV}$
 - DØ: $m_t = 170 \text{ GeV}$
- Event Selection:
 - lepton+jets
 - MET+jets (CDF)
- S:B ≈ 1:20

& ≥1 b-tag

04/27/09

& ≥1 b-tag

- By CDF (3.2 fb⁻¹) and DØ (2.3 fb⁻¹)
 - CDF: m_t = 175 GeV
 - DØ: m_t = 170 GeV
- Event Selection:
 - lepton+jets
 - MET+jets (CDF)
- S:B ≈ 1:20
- Need sophisticated discriminants!
- Cross-section calculation:
 - Data & model discriminant distribution bayesian posterior
- Significance:
 - p-value from pseudo-experiments

tb+tgb Cross Section [pb]

- Need sophisticated discriminants:
 - Boosted Decision Trees:
 - DT: sequence of cuts
 - Boosting: forest of trees with higher weights for failed signal events
 - Variables: 20 (CDF), 64 (DØ)

04/27/09

- Need sophisticated discriminants:
 - Neural Networks:
 - DØ: Bayesian NN. Many NN's averaged according to a bayesian posterior
 - CDF: 4 NN's with 11-18 variables including a jet flavor separator

NN Results

	\mathcal{L} [fb ⁻¹]	Signif Exp.	icance Obs.	σ_{s+t} [pb]
B 单	2.3	4.1σ	5.2σ	$4.7^{+1.2}_{-0.9}$
•	3.2	5.2σ	3.5σ	$1.8^{+0.6}_{-0.6}$

04/27/09

- Need sophisticated discriminants:
 - Matrix Element

	\mathcal{L} [fb ⁻¹]	Signif Exp.	icance Obs.	σ_{s+t} [pb]
B	2.3	4.1σ	5.0σ	$4.3^{+1.0}_{-1.2}$
0	3.2	4.9σ	4.3σ	$2.5^{+0.7}_{-0.6}$

- Likelihood Function (only CDF)
 - Also optimized for s-channel
- MET+jets with NN (only CDF)
 - Recover non-reconstructed leptons

â	\mathcal{L}	Signif	icance	σ_{s+t}
W	$[fb^{-1}]$	Exp.	Obs.	[pb]
∉ _T +jets	2.1	1.4σ	2.1σ	$4.9^{+2.5}_{-2.2}$
LF	3.2	4.0σ	2.4σ	$1.6^{+1.0}_{-0.8}$
LFS [†]	3.2	1.1σ	2.0σ	$1.5^{+0.9}_{-0.8}$

- Combination: OBSERVATION!!!
 - Combine the individual discriminants $\stackrel{\frown}{=}$
 - DØ: use BNN
 - CDF: use NN optimized with "Neuro-Evolution of Augmenting Topologies"

combined Results					
	\mathcal{L}	Significance		σ_{s+t}	
	$[\mathrm{fb}^{-1}]$	Exp.	Obs.	[pb]	
	2.3	4.5 σ	5.0 σ	$3.9^{+0.9}_{-0.9}$	
•	3.2	5.9σ	5.0 σ	$2.3^{+0.6}_{-0.5}$	

• Event displays

• Direct measurement of $|V_{_{tb}}|$

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \underbrace{V_{tb}}_{tb} \left\{ \gamma^{\mu} \left[f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right] - \frac{i\sigma^{\mu\nu}}{M_{W}} \left(p_{t} - p_{b} \right)_{\nu} \left[f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right] \right\}$$

Summary

• Top mass: latest CDF & DØ combination:

 $173.1 \pm 0.6(stat) \pm 1.1(syst) \text{ GeV}$

- Improvements in top pair cross section measurement.
 Interesting properties can be extracted
- Measured top properties still consistent with the SM.
- Physics beyond the SM being searched.
- Single top observed by CDF and DØ
- Improved direct measurements of |Vtb|

http://www-cdf.fnal.gov/physics/new/top/public.html http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

Back-up

Tau identification

- Tau candidates is a narrow jets (dR = 0.3) + one or more tracks
- For each tau type a neural network has been trained to distinguish between true taus (from MC) and from fakes (from data).
- NN inputs: isolation, energy deposition profiles, track / calorimeter correlation variables. NN performance has been verified with Z⇒ττ data

Lepton+jets selection

	DO	CDF
electron:	isolated cluster in EM calo, p_{τ} >20 GeV, track match, $ \eta \in 0 - 1.1$	isolated cluster in EM calo, p ₇ >20 GeV, track match,
muon:	track in muon system, track in central tracker isolated in calo and tracker $p_T > 20 \text{ GeV}, \eta < 2$	track in muon system, trak in central tracker isolated in calo and tracker $p_T > 20 \text{ GeV}$
jet:	dR=0.5 cone, JES corrected for muons from b-quark decays, at least 2 jets with $p_{\tau} > 40$ (leading), 20 GeV, $ \eta < 2.5$	dR=0.4 cone, JES corrected, at least 3 jets with $p_T > 30$ (leading), 20 GeV, $ \eta < 2$.
MET:	corrected for electrons, muons, jets. MET >20 (e+jets), 25 (μ +jets) GeV. MET vector and lepton p_ separted in azimuth	corrected for electrons, muons, jets, MET > 35 GeV
Final:	topological, with b-tagging	topological (neural network), with b-tagging

Dilepton selection

	D0	CDF
electron:	isolated cluster in EM calo, p _T >15 GeV, track match,	isolated cluster in EM calo, p _⊤ >20 GeV, track match,
	$ \eta \in 0 - 1.1, 1.5 - 2.5$	
muon:	track in muon system, track in central tracker isolated in calo and tracker $p_T > 15 \text{ GeV}$, $ \eta < 2$	track in muon system and in central tracker isolated in calo and tracker p _T >20 GeV,
jet:	dR=0.5 cone, JES corrected for muons from b-quark decays, $p_T > 30$, 20 GeV, $ \eta < 2.5$	dR=0.4 cone, JES corrected, $p_{_{T}}$ > 30, 15 GeV, $ \eta $ < 2.5
MET:	corrected for electrons, muons, jets, MET > 0, 35, 45 GeV	corrected for electrons, muons, jets, MET > 25 GeV
Final:	topological	topological, with b-tagging

Matrix Method

Mass ME I+jets systematics

(GeV)

Source	Uncertainty (GeV)	Systematic source	Systematic uncertainty
Higher Order Effects	± 0.25	Calibration	0.2
ISR/FSR	± 0.26	MC generator	0.5
Hadronization and UE	± 0.58	ISR and FSR	0.3
Color Reconnection	± 0.50	Residual JES	0.5
PDF uncertainty Residual JES uncertainty	± 0.24 ± 0.21	b-JES	0.4
Relative b /light response	±0.81	Lepton P_T	0.2
Sample-dependent JES	± 0.56	Multiple hadron interactions	0.1
Jet ID efficiency	± 0.26	PDFs	0.2
Jet energy resolution	± 0.32	Background	0.5
Plus a few smaller sys	< 0.2	Color reconnection	0.4
Total	±1.44	Total	1.1

Mass dilepton systematics

Uncertainty	$e\mu~$ Run IIb [GeV]
JES up	-1.5
JES down	+1.8
b quark JES	+1.4
jet resolution up	-0.7
jet resolution down	+0.7
jssr shifting	+0.1
muon smearing up	-0.0
muon smearing down	+0.3
b quark fragmentation	±0.3
PDF uncertainty up	-0.2
PDF uncertainty down	+0.1
fit uncertainty	± 0.4
signal modeling	± 0.4
background fraction up	-0.1
background fraction down	+0.2
Total	$^{+2.5}_{-1.8}$

Uncertainty	$e\mu$ Run IIa [GeV]	$e\mu$ Run IIb [GeV]
JES	+1.2 -1.3	+1.5 -1.6
b/light quark response	± 1.4	± 1.6
jet resolution	+0.6	+0.2 -0.3
sample-dependent JES	± 0.2	± 0.1
muon smearing	$^{+0.3}_{-0.0}$	± 0.3
b quark modeling	± 0.1	± 0.3
PDF uncertainty	+0.3	+0.1
MC calibration	± 0.4	± 0.4
signal fraction	$^{+0.2}_{-0.0}$	± 0.3
QCD background modeling	± 0.6	± 0.6
electron energy scale	± 0.1	± 0.1
muon momentum scale	± 0.2	± 0.2
hadronization and UE	± 1.0	± 1.0
ISR/FSR	± 0.6	± 0.6
Color reconnection	± 0.4	± 0.4
Total	± 2.4	± 2.6

TABLE II: Summary of systematic uncertainties.

Mass alljets systematics

	Source	$\delta M_{top}^{syst}~({ m GeV}/c^2)$	$\delta \Delta \text{JES}^{syst}$
	Residual bias	$^{+0.8}_{-0.4}$	$^{+0.18}_{-0.24}$
	2D calibration	< 0.1	< 0.01
EQ	Generator	0.3	0.25
	ISR/FSR	0.1	0.06
	b-jets energy scale	0.2	0.04
	SF E_T dependence	0.1	0.01
	Residual JES	0.5	
	PDF	$^{+0.3}_{-0.2}$	$^{+0.05}_{-0.04}$
	Multiple Hadron Interactions	0.2	0.01
	Color Reconnections	0.4	0.08
	Templates Statistics	0.3	0.07
	Background Shape	0.1	0.02
	Background Normalization	0.2	0.05
	Total	$^{+1.2}_{-1.0}$	$^{+0.34}_{-0.37}$

04/27/09

F

top quark charge

- is it
 - t→W⁺b (Q_{top} = 2/3 e)
 - t→W⁻b (Q_{top} = -4/3 e)
- Exotic model
 - doublet (-1/3e,-4/3e) ?
 - D. Chang et al., PRD59 (1999) 091503
- D0 PRL 98, 041801 (2007)
 - 4/3e excluded at 92% CL
 - fraction of exotic quark pairs
 < 0.80 (90% CL)
- CDF result with 1.5/fb
 - p-value for SM: 0.31
 - exotic model XM excluded with 87% CL

DØ

- One isolated lepton with p_T > 15 and |η| < 1.1 (2.0) for e (μ)
- Veto events with additional leptons
- 2-4 jets, with $p_T > 15$ GeV and $|\eta_{\rm det}| < 3.4$
- 1-2 b-tagged jets
- Leading jet p_T > 25 GeV
 Leading b-tagged jet p_T > 20 GeV
- ∉_T > 20 (25) for events with 2 (3 or 4) jets
- Remove events with low H_T(alljets, μ,∉_T) (~< 120 GeV) to reduce QCD
- Remove events where ℓ aligned/anti-aligned with ∉_T

CDF

- One isolated lepton with $p_T > 20$ and $|\eta| < 1.6$ (not for MJ)
- Veto additional leptons
- 2-3 jets, with $p_T > 20$ GeV and $|\eta_{det}| < 2.8$
- At least one b-tagged jet
- ∉_T > 25 (50) for LJ (MJ)
- MJ only: leading jet p_T > 35, second jet p_T > 25 GeV
- MJ only: Cut on NN trained to chareterize QCD

Single top event yields

Process	Number of Eve	ents in 3.2 fb $^{-1}$
	W + 2 jets	W + 3 jets
s-channel	58.1 ± 8.4	19.2 ± 2.8
t-channel	87.6 ± 13.0	$\textbf{26.2} \pm \textbf{3.9}$
$Wb\overline{b}$	656.9 ± 198.0	$\textbf{201.3} \pm \textbf{60.8}$
$Wc\bar{c}$	292.2 ± 90.1	$\textbf{98.1} \pm \textbf{30.2}$
Wcj	250.4 ± 77.2	52.1 ± 16.0
Mistags	501.3 ± 69.6	151.9 ± 21.4
non-W	89.6 ± 35.8	$\textbf{35.1} \pm \textbf{14.0}$
WW	58.5 ± 6.6	21.2 ± 2.4
WZ	28.9 ± 2.4	8.5 ± 0.7
ZZ	0.9 ± 0.1	0.4 ± 0.0
Z + jets	36.5 ± 5.6	15.6 ± 2.4
$t\bar{t}$ dilepton	69.2 ± 10.0	60.2 ± 8.7
$t\bar{t}$ non-dilepton	134.9 ± 19.6	$\textbf{421.8} \pm \textbf{61.1}$
Total signal	145.7 ± 21.4	45.4 ± 6.7
Total prediction	2265.0 ± 375.4	1111.5 ± 129.5
Observed in data	2229	1086

Event Yields in 2.3 fb ⁻¹ of DØ Data					
Electron + muon, 1 tag + 2 tags combined					
Source 2 jets 3 jets 4 jets					
s-channel tb	62 ± 9	24 ± 4	7 ± 2		
t-channel tqb	77 ± 10	39 ± 6	14 ± 3		
W+bb	678 ± 104	254 ± 39	73 ± 11		
W+cc	303 ± 48	130 ± 21	42 ± 7		
W+cj	435 ± 27	113 ± 7	24 ± 2		
W+jj	413 ± 26	140 ± 9	41 ± 3		
Z+jets	141 ± 33	54 ± 14	17 ± 5		
Dibosons	89 ± 11	32 ± 5	9 ± 2		
$t\bar{t} \rightarrow \ell \ell$	149 ± 23	105 ± 16	32 ± 6		
$t\bar{t} \rightarrow \ell + jets$	72 ± 13	331 ± 51	452 ± 66		
Multijets	196 ± 50	73 ± 17	30 ± 6		
Total prediction	2,615 ± 192	1,294 ± 107	742 ± 80		
Data	2,579	1,216	724		

Single top systematics

Systematic Uncertainties

Systematic	Rate	Shape
Jet energy scale	016%	1
Initial state radiation	011%	1
Final state radiation	015%	1
Parton distribution functions	23%	1
Monte Carlo generator	15%	_
Event detection efficiency	09%	_
Luminosity	6%	_
NN flavor separator	_	✓
Mistag model	_	1
Non-W model	_	1
ALPGEN Q ²	_	1
MC Modeling $(\Delta R, \eta(j_2))$	_	1
$Wb\bar{b}+Wc\bar{c}$ normalization	30%	_
W c normalization	30%	_
Mistag normalization	1729%	_
Top Mass - top-pair normalization	23%	1

Probability to observe data distribution D, expecting y:

- Bayesian posterior probability density
- Shape and normalization systematics treated as nuisance parameters
- Correlations between uncertainties properly accounted for
- Flat prior in signal cross section