Longitudinal target polarization dependence of $\overline{\Lambda}$ polarization and polarized strangeness PDF

Aram Kotzinian

CEA-Saclay, IRFU/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France On leave in absence from YerPhI, Armenia and JINR, Russia

DIS 2009, 26-30 April 2009, Madrid

• $\overline{\Lambda}$ polarization

- Unpolarized target
 - Strangeness distribution in nucleon
- Polarized target
 - Polarized strangeness in polarized nucleon
- Conclusions

Madrid, April 27, 2009

Simple model: LO, independent fragmentation for current fragmentation region

$$P_{T} = 0 \qquad \Longrightarrow \qquad P^{\overline{\Lambda}} = P_{P_{B},0}^{\overline{\Lambda}} = D(y)P_{B} \frac{\sum_{q} e_{q}^{2}q(x)\Delta D_{q}^{\overline{\Lambda}}(z)}{\sum_{q} e_{q}^{2}q(x)D_{q}^{\overline{\Lambda}}(z)}$$

SU(6) Model for spin transfer in fragmentation:

only
$$\Delta D_{\overline{s}}^{\overline{\Lambda}}(z) \neq 0$$
,
 $\Delta D_{\overline{s}}^{\overline{\Lambda}}(z) = D_{\overline{s}}^{\overline{\Lambda}}(z)$
 $S_{x}^{\overline{\Lambda}} = \frac{P^{\overline{\Lambda}}}{D(y)P_{B}} \approx \frac{\frac{1}{9}\overline{s}(x)D_{\overline{s}}^{\overline{\Lambda}}(z)}{\sum_{q}e_{q}^{2}q(x)D_{q}^{\overline{\Lambda}}(z)} \approx F_{\overline{s}}^{\overline{\Lambda}}(x,z)$
Fraction of events with
hard scattering off s-bar
(s-bar purity)
2

Madrid, April 27, 2009

Spin transfer in SIDIS

Spin transfer from qq side

Spin transfer from q side

$$\begin{split} P_{\Lambda}^{\nu \, d}(\text{prompt};N) &= P_{\Lambda}^{\bar{\nu} \, u}(\text{prompt};N) = P_{\Lambda}^{l \, u}(\text{prompt};N) \\ &= P_{\Lambda}^{l \, d}(\text{prompt};N) = C_{sq} \cdot P_{q}, \\ P_{\Lambda}^{\nu \, d}(\Sigma^{0};n) &= P_{\Lambda}^{\bar{\nu} \, u}(\Sigma^{0};p) = P_{\Lambda}^{l \, u}(\Sigma^{0};p) = P_{\Lambda}^{l \, d}(\Sigma^{0};n) \\ &= \frac{1}{3} \cdot \frac{2 + C_{sq}}{3 + 2C_{sq}} \cdot P_{q}, \\ P_{\Lambda}^{\nu \, d}(\Sigma^{\star 0};n) &= P_{\Lambda}^{\nu \, d}(\Sigma^{\star +};p) = P_{\Lambda}^{\bar{\nu} \, u}(\Sigma^{\star 0};p) \\ &= P_{\Lambda}^{\bar{\nu} \, u}(\Sigma^{\star +};n) = P_{\Lambda}^{l \, u}(\Sigma^{\star 0};p) = P_{\Lambda}^{l \, d}(\Sigma^{\star 0};n) \\ &= P_{\Lambda}^{l \, d}(\Sigma^{\star +};p) = P_{\Lambda}^{l \, u}(\Sigma^{\star -};n) = -\frac{5}{3} \cdot \frac{1 - C_{sq}}{3 - C_{sq}} \cdot P_{q}. \end{split}$$

Λ^{0} 's parent	$C_u^{\Lambda^0}$		$C_d^{\Lambda^0}$		$C^{\Lambda^0}_s$	
	SU(6)	BJ	SU(6)	BJ	SU(6)	BJ
quark	0	-0.18	0	-0.18	1	0.63
Σ^{0}	-2/9	-0.12	-2/9	-0.12	1/9	0.15
Ξ^0	-0.15	0.07	0	0.05	0.6	-0.37
Ξ^{-}	0	0.05	-0.15	0.07	0.6	-0.37
Σ^{\star}	5/9	_	5/9	_	5/9	_

Madrid, April 27, 2009

NOMAD data

Model A: $C_{sq \, val} = -0.35 \pm 0.05$, $C_{sq \, sea} = -0.95 \pm 0.05$, Model B: $C_{sq \, val} = -0.25 \pm 0.05$, $C_{sq \, sea} = 0.15 \pm 0.05$.

Madrid, April 27, 2009

$\overline{\Lambda}$ polarization

Unpolarized target

NOMAD tuning used Best description with SU(6) model for spin transfer. $\overline{\Lambda}$ polarization = s(x) filter Madrid, April 27, 2009

Quark type fraction in anti-Lambda production

LEPTO MC with CTEQ5L and COMPASS cuts In contrast to K production asymmetry, here mainly s-bar contributes to and $\Delta P^{\overline{\Lambda}}$ $P^{ar{\Lambda}}$ $F_{\overline{x}}^{\overline{\Lambda}}(x) \approx 0.15 \div 0.2$ for $x \le 0.1$

Madrid, April 27, 2009

Hyperon production x-section and polarization for polarized beam and target

From general considerations for double and triple longitudinal polarization observables:

Target polarization sign is written explicitly Beam polarization contains sign

Madrid, April 27, 2009

Polarization Asymmetry $A_{p\bar{\Lambda}}(x)$

$$P^{\overline{\Lambda}} \coloneqq \frac{1}{2} \left(P_{P_B, -P_T}^{\overline{\Lambda}} + P_{P_B, P_T}^{\overline{\Lambda}} \right)$$
$$\Delta P^{\overline{\Lambda}} \coloneqq P_{P_B, -P_T}^{\overline{\Lambda}} - P_{P_B, P_T}^{\overline{\Lambda}}$$

Polarization asymmetry

$$A_{P^{\bar{\Lambda}}}(x) \coloneqq \frac{\Delta P^{\bar{\Lambda}}(x)}{P^{\bar{\Lambda}}(x)}$$

Madrid, April 27, 2009

Factorized LO QCD parton model

$$P_{P_{B},P_{T}}^{\bar{\Lambda}} = \frac{\sum_{q} e_{q}^{2} \left[D(y)P_{B} - fP_{T} \frac{\Delta q(x)}{q(x)} \right] q(x)\Delta D_{q}^{\bar{\Lambda}}(z)}{\sum_{q} e_{q}^{2} \left[1 - D(y)P_{B} fP_{T} \frac{\Delta q(x)}{q(x)} \right] q(x)D_{q}^{\bar{\Lambda}}(z)}$$

$$P_{T}^{eff} = fP_{T} \approx \begin{cases} 0.2 \text{ for Deuteron} \\ 0.14 \text{ for Proton} \end{cases}$$

$$\langle D(y) \rangle \approx 0.5 - 0.85, \ \left| \frac{\Delta q(x)}{q(x)} \right| \le 0.5$$

$$D(y)P_{B} fP_{T} \frac{\Delta q(x)}{q(x)} \right| \le 0.85 \cdot 0.8 \cdot 0.2 \cdot 0.5 = 0.068$$
We can neglect pol.dep. part in denom.

ISM expression is more complicated, but results are almost unchanged

Madrid, April 27, 2009

 $A_{p^{\bar{\Lambda}}}(x)$ in LO QCD parton SU(6) model

$$P^{\bar{\Lambda}} \approx \left\langle D(y) \right\rangle P_{B} \frac{\frac{1}{9} \overline{s}(x) D_{\bar{s}}^{\bar{\Lambda}}(z)}{\sum_{q} e_{q}^{2} q(x) D_{q}^{\bar{\Lambda}}(z)}, \quad \Delta P^{\bar{\Lambda}} \approx 2 f P_{T} \frac{\Delta \overline{s}(x)}{\overline{s}(x)} \frac{\frac{1}{9} \overline{s}(x) D_{\bar{s}}^{\bar{\Lambda}}(z)}{\sum_{q} e_{q}^{2} q(x) D_{q}^{\bar{\Lambda}}(z)}$$
$$\frac{\Delta \overline{s}(x)}{\overline{s}(x)} \approx \frac{\left\langle D(y) \right\rangle P_{B}}{2 f P_{T}} \frac{\Delta P^{\bar{\Lambda}}(x)}{P^{\bar{\Lambda}}(x)} = \frac{\left\langle D(y) \right\rangle P_{B}}{2 f P_{T}} A_{p^{\bar{\Lambda}}}(x)$$
$$\left| \frac{\left\langle D(y) \right\rangle P_{B}}{2 f P_{T}} \right| \approx 1, \text{ for COMPASS Deuteron target}$$
$$A_{p^{\bar{\Lambda}}}(x) = \frac{\Delta P^{\bar{\Lambda}}(x)}{P^{\bar{\Lambda}}(x)} (COMPASS) \approx \frac{\Delta \overline{s}(x)}{\overline{s}(x)}$$

Madrid, April 27, 2009

ISM calculations using LEPTO

Nomad settings and $c_{\overline{s}q} = c_{sq}$

Symbolic notations: Lund Model is realization of Fracture Functions.

Spin transfer via heavy hyperons is taken into account.

$$P_{P_{B},P_{T}}^{\bar{\Lambda}}(x,x_{F},...) = \frac{N_{q}(x,x_{F},...) + N_{qq}(x,x_{F},...)}{N(x,x_{F},...)}$$

$$N_{q}(x,x_{F},...) = \sum_{q(R_{q} \leq R_{qq})} e_{q}^{2} \left[D(y)P_{B} - fP_{T} \frac{\Delta q(x)}{q(x)} \right] q(x)D_{q}^{\bar{\Lambda}}(z)S_{q}^{\bar{\Lambda}}$$

$$N_{qq}(x,x_{F},...) = -\sum_{q(R_{q} > R_{qq})} e_{q}^{2} \left[D(y)P_{B} - fP_{T} \frac{\Delta q(x)}{q(x)} \right] q(x)D_{q}^{\bar{\Lambda}}(z)c_{\bar{s}q}$$

$$N(x,x_{F},...) = \sum_{q} e_{q}^{2} \left[1 - D(y)P_{B}fP_{T} \frac{\Delta q(x)}{q(x)} \right] q(x)D_{q}^{\bar{\Lambda}}(z)$$

Separately calculate numerator and denominator by

reweighting each generated event

Madrid, April 27, 2009

Two inputs for $P_q = \Delta q/q$

Madrid, April 27, 2009

COMPASS cuts

 $Q^2 > 1 \text{ (GeV/c)}^2; 0.2 < y < 0.9$ Primary vertex: -100 < z < 100 or -30 < z < 30 (cm)Decay vertex: $35 < z_{dec} < 140 \text{ (cm)}$ Vertexes colinearity cut: $\theta_{col} = 0.01$ Decay particles momentum: p > 1 GeV/cFeynman variable: $0.05 < x_F < 0.5$ A rest frame decay angle cut: $\cos(\theta^*) < 0.6$

Dependence on pol. PDFs

To verify sign change of $\Delta \overline{s}$ measure in two bins of x: x < 0.03 and 0.03 <x

Madrid, April 27, 2009

COMPASS preliminary

Sing change of ΔP corresponds to DSSV PDFs

Madrid, April 27, 2009

Conclusions

 (Anti)Lambda polarization measurements in SIDIS of polarized leptons off unpolarized and polarized targets can shed light unpolarized and polarized sbar distributions in nucleon

- (Anti)Lambda polarization on unpolarized target strongly depends on strangeness PDF
- Polarization asymmetry strongly depends on strangeness polarization shape

 (Anti)Lambda polarization in SIDIS is well suited filter for nucleon strangeness study