

Electroweak Precision Data and New Gauge Bosons

Jens Erler Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México (IF-UNAM)

DIS 2009

Madrid, Spain

April 26-30, 2009

Acknowledgment

- for invitation and help
 - DIS 2009 organizers & especially Paco del Aguila
- for collaboration on precision physics
 - Paul Langacker (IAS)
- for collaboration on Z' bosons
 - Paul Langacker (IAS)
 - Shoaib Munir (IF-UNAM)
 - Eduardo Rojas (IF-UNAM)

Outline

- The High Energy Frontier
 - constraining the Standard Model Higgs boson
 - constraining the W-Z-Z' interdependence
- The Precision Frontier
 - constraining the Z' mediated amplitude
- The Intensity Frontier
 - constraining non-universal Z' bosons
- Conclusions

The High Energy Frontier: SM Higgs boson and W-Z-Z' interdependence

SM global fit: formalism

- μ -lifetime $\Rightarrow (\sqrt{2} G_F)^{-1/2} = 246.2209 (5) GeV$
- electron $g-2 \Rightarrow \alpha^{-1} = 137.035 999 679 (94)$
- Z lineshape \Rightarrow M_Z = 91.1876 (21) GeV
- $\Rightarrow \overline{\rho} \sin^2 \overline{\theta}_{W} \cos^2 \overline{\theta}_{W} (1 \Delta \overline{r}) = 0.167 \ 145 \ (8) = \sin^2 \theta_{W} \cos^2 \theta_{W} (1 \Delta r), \text{ with } \cos^2 \theta_{W} = M_W / M_Z$
- two equations, one unknown: M_H (in $\overline{\rho}$ and Δr)
- there is additional M_H -dependence in Γ_Z & the low energy neutral current (ρ) and the Zbb-vertex

SM global fit: results

	global fit	dominated by	
m _t [GeV]	173.1 ± 1.4	CDF & D0	
Mw [GeV]	80.380 (15)	LEP 2, CDF & D0	
Mz [GeV]	91.1874 (21)	LEP I	
$sin^2\overline{\theta}_W(M_Z)$	0.23119 (13)	A _{FB} (b) & A _{LR}	
<mark>М</mark> н [GeV]	96 ⁺²⁹ -25	$\sin^2\overline{\theta}_{W}$ (M _Z) & M _W	
α_{s} (M _Z)	0.1185 (16)	Z-lineshape & T-decays	
$\chi^2/d.o.f.$	48.0/45 (35%)	muon g-2	

LEP 2 Higgs searches

Tevatron Higgs searches

10

Universal Z' bosons: formalism

- consider only effects of Z' (not exotic fermions)
- in this case Z' decouples (unlike 4th family)
- $\tan^2 \theta = [M_0^2 M_z^2] / [M_{z'}^2 M_0^2],$ with $\cos \theta_W = M_W / M_0$ (Langacker 1984)
- can allow $T \neq 0$ (Higgs triplets, exotics in loops)
- $\theta = C g_2/g_1 M_z^2/M_{z'}^2$, with C a function of the U(1)' charges and VEVs of the Higgs sector
- $sin\theta = 0 \Rightarrow$ high energy data virtually blind to Z'
- conversely: high energy data $\Rightarrow \sin\theta \leq \mathcal{O}(10^{-3})$

Universal Z' bosons: examples

- $Z_X: SO(10) \rightarrow SU(5) \times U(1) (GUTs)$
- $Z_{\psi}: E_6 \rightarrow SO(10) \times U(1) (GUTs)$
- Z_{η} : $\sqrt{3/8} Z_{\chi} \sqrt{5/8} Z_{\psi}$ (heterotic string)
- $Z_{LR}: SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y \times U(1)'$ (LR model)
- Z_R : 3rd component of SU(2)_R (best fit to data)
- sequential Z': excited Z or from extra dimensions
- Z_X: model motivated by seesaw V-masses (Adhikari, Ma, JE 2008)

The Precision Frontier: Z' mediated amplitude

CKM first row unitarity

- superallowed $0^+ \rightarrow 0^+ \beta$ -decays (Hardy, Towner): $|V_{ud}| = 0.97424$ (8) (10) (18) = 0.97424 ± 0.00022
- K_{I3} decays: $|V_{us}| = 0.22478 \pm 0.00124$ (KLOE)
- K_{12} decays: $|V_{us}/V_{ud}| = 0.23216 \pm 0.00145$ (KLOE)
- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 1 = 0.0000 \pm 0.0006$ $\propto e_L (e_L - q_L) \ln(M_{Z'}/M_W)/(M_{Z'}^2/M_W^2 - 1)$ from 1-loop W-Z' box (Marciano, Sirlin 1987)
- $\Rightarrow M_{\chi} \ge 265 \text{ GeV}$ at 95% CL ($\Delta \chi^2 \le 3.84$) (no constraint on Z_{ψ} , since $e_L = q_L$)

Atomic parity violation

- Nuclear spin independent PV sensitive to q-vector
 e⁻-axial-vector couplings (C_{1i}, Q_W ~ A³)
- most precise measurement: $Q_W(^{133}Cs)$ (Boulder)
- also needs precise atomic structure calculation ⇒
 Q_W(¹³³Cs) = -73.17 ± 0.29 (exp.) ± 0.20 (theory) (Derevianko 2008)
- $SM: Q_W(Cs) = 188 Q_W(u) + 211 Q_W(d) = -73.15$
- $\Delta Q_W(q) \propto (e_L e_R) (q_L + q_R) M_Z^2 / M_{Z'}^2 (\sin\theta = 0)$
- $\Rightarrow M_X \ge 0.89 \text{ TeV} (95\% \text{ CL}) (Z_{\psi}: q_L + q_R = 0)$

Polarized Møller scattering

- SLAC E-158: E = 45 & 48 GeV, P \simeq 89 ± 4 % \Rightarrow Q² \simeq m E \simeq 0.026 GeV² (high energy, low Q²)
- $A_{RL} = -(1.31 \pm 0.14 \pm 0.10) \times 10^{-7} \propto Q_W(e)$ $\Rightarrow Q_W(e) = -0.0403 \pm 0.0053$
- SM: $Q_W(e) = \rho (-1 + 4 \kappa \sin^2 \theta_W[\sqrt{Q^2}]) = -0.0472$
- $\Delta Q_W(e) \propto (e_L e_R) (e_L + e_R) M_Z^2 / M_{Z'}^2 (sin\theta=0)$ (manifestly complementary to Tevatron and LEP 2)
- $\Rightarrow M_X \ge 0.67 \text{ TeV} (95\% \text{ CL}) (Z_{\psi}: e_L + e_R = 0)$

Polarized e⁻ scattering: future

- Qweak @ 6 GeV CEBAF: $\Delta Q_W(p) = \pm 0.0029 \Rightarrow$ M_X ≥ 0.67 TeV (expected 95% CL limit)
- PV-DIS @ 6 and I2 GeV CEBAF:

 $(2 C_{1u} - C_{1d}) + 0.84 (2 C_{2u} - C_{2d}) = \pm 0.0049 \Rightarrow$

 $M_X \ge 0.45 \text{ TeV} (Z_{\psi}: q_L + q_R = e_L + e_R = 0) \text{ or}$

PDFs: higher twist (CSV) go with $Q^2(x)$

• e2ePV @ 12 GeV CEBAF: $\Delta Q_W(e) = \pm 0.0011 \Rightarrow$ $M_X \ge 1.07 \text{ TeV or } \Delta \sin^2 \theta_W = \pm 0.00029$

(Petriello, Quackenbush, 2008)

Universal Z' bosons: results

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1,140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)
Zη	419	904	515 (OPAL)
Z _{LR}	976	630	804 (2f-WG)
sequential Z'	I,387	1,030	I,787 (2f-WG)

- precision data assume T = 0 ($\rho = I$)
- CDF assumes no exotic or SUSY decay channels
- LEP 2 assumes $\sin\theta = 0$

 M_{Z} [TeV]

 $0.46 \text{ TeV} < M_{Z'} < 29 \text{ TeV}$ (90% CL)

The Intensity Frontier: non-universal Z' bosons

Non-universal Z' bosons

- CLFV, new FCNCs & CPV can be induced through
 - intergenerational couplings (charges) of the Z'
 - fermion mass matrices even if Z' is diagonal
 - the ordinary Z if $\sin\theta \neq 0$
 - mixing of ordinary fermions & exotics (Z & Z')
- \Rightarrow effects difficult to quantify even within a model
- comprehensive analysis: Langacker, Plümacher 2000
- non-univeral fit to EW data: Erler, Langacker 2000

Flavor change

- $B(K \rightarrow \mu e) < 4.7 \times 10^{-12} (BNL) \Rightarrow \Lambda > 450 \text{ TeV}$
- $B(\mu \rightarrow 3e) < 1.0 \times 10^{-12}$ (SINDRUM) $\Rightarrow \Lambda > 250 \text{ TeV}$
- $B(\mu \rightarrow e \gamma) < 1.2 \times 10^{-11} (MEGA) \Rightarrow \Lambda > 240 \text{ TeV}$
- $R(\mu^{-}Ti \rightarrow e^{-}Ti) = \Gamma(\mu^{-}Ti \rightarrow e^{-}Ti) / \Gamma(\mu^{-}Ti \rightarrow v Sc) < 6.1 \times 10^{-13} (SINDRUM II) \Rightarrow \Lambda > 280 TeV$
- $B(K^+ \rightarrow \pi^+ \vee \overline{\nu}) = (1.73 \pm 1.1) \times 10^{-10} \Rightarrow \Lambda \gtrsim 76 \text{ TeV}$
- $[m(B_H)-m(B_L)]/[m(B_H)+m(B_L)] = 3.160(31) \times 10^{-14}$ (BaBar, Belle, CDF, D0, LEP) $\Rightarrow \Lambda \gtrsim 3$ PeV (theory!)

CP violation

- $|\epsilon_{K}| [m(K_{L}) m(K_{S})] / [2 m(K_{0})] =$ (7.801 ± 0.042)×10⁻¹⁸ (PDG) $\Rightarrow \Lambda \approx 140 \text{ PeV}$
- $\epsilon' \Rightarrow \Lambda \ge 800 \text{ PeV}$, even with 100% SM uncertainty (cancellations between EW and QCD penguins)
- EDMs (need many different ones to discriminate between new physics scenarios)
 - eEDM, µEDM, nEDM, pEDM, dEDM
 - paramagnetic (eEDM) and diamagnetic (nuclear Schiff moment) atoms

Conclusions

Conclusions

- Higgs searches + EW precision data restricts Higgs mass to 30 GeV window (in SM)
- Z' constraints from EW precision data competitive with LEP 2 and Tevatron
- 2σ problems in APV and CKM first row unitarity disappeared entirely
- CLFV, FCNCs & CPV effects typically off the charts
- B & B_S-mixing & CPV (K-system) typically too large even for equal U(I)' charges of first two families