Strangeness Production in DIS at HERA

- HERA kinematics
- Strange Particles (K_{s}^{0} , Λ) Production in *ep* Collisions

Differential cross-sections $\Lambda - \overline{\Lambda}$ asymmetry Ratios of differential cross sections ($\Lambda / K_s^0, K_s^0/h^\pm$)

• Summary

Grażyna Nowak IFJ PAN Krakow

representing

Processes for Strangeness Production in *ep* Scattering

Dominant: hadronisation (non-perturbative process) LUND string fragmentation model $\lambda_s = P(s)/P(q)$ strangeness suppression factor more parameters for baryon production: $\lambda_{qq} = (P(qq)/P(q))$ diquark suppression factor strange diquark $\lambda_{sq} = (P(sq)/P(qq))/(P(s)/P(q))$ suppression factor boson-gluon fusion decays of heavy quarks e(k)e(k')e(k)e(k') \overline{c} \overline{s} p(P)

hard processes: QPM

QCD Models for DIS ep Interactions

ARIADNE

MEPS Matrix Element+ Parton Shower

 $\begin{array}{c} \mathsf{DGLAP}-\mathsf{strong} \text{ ordering in } \mathsf{k}_{\mathsf{T}} \\ \mathsf{of} \text{ emitted partons} \end{array}$

CDM Color Dipole Model

dipoles radiate independently \rightarrow no ordering in k_T of emitted partons

Both are interfaced to JETSET for hadronisation (Lund string model) with λ_s =0.286, λ_{qq} =0.108, λ_{sq} =0.690 (e⁺e⁻ ALEPH tuned parameters)

only λ_{s} varied for comparison of the predictions

differential production cross-sections in LAB frame in Q^2 , x, η , p_{τ}

Grażyna Nowak

 K^0

Strangeness Production in DIS at HERA

A differential production cross-sections in LAB frame in Q^2 , x, p_T , η

Overall agreement with LO Monte Carlo predictions

DM and **MEPS** with λ_s = 0.3

(strange baryon production depends not only on λ_{s} , but also on $\lambda_{qq}, \, \lambda_{sq}$)

Difficulties:

at low x, at low p_T , shape of η

Grażyna Nowak

Grażyna Nowak

Strangeness Production in DIS at HERA

$$\Lambda - \overline{\Lambda}$$
 Asymmetry

$$\mathbf{A}_{\mathbf{A}} = \frac{[\sigma_{vis}(ep \to e\Lambda X) - \sigma_{vis}(ep \to e\bar{\Lambda}X)]}{[\sigma_{vis}(ep \to e\Lambda X) + \sigma_{vis}(ep \to e\bar{\Lambda}X)]}$$

Laboratory frame

Strangeness Production in DIS at HERA

Breit frame

Sensitivity of K_{s}^{0} , Λ Production to Proton Parton Density Functions

Grażyna Nowak

Strangeness Production in DIS at HERA

Ratio of production cross sections: strange baryons/strange mesons

 $e p \rightarrow e \Lambda X / e p \rightarrow e K_s^0 X$

Grażyna Nowak

Strangeness Production in DIS at HERA

DIS2009 Madrid 26-30.04.2009

LAB

Strangeness Production in DIS at HERA

Grażyna Nowak

Strangeness Production in DIS at HERA

Summary

- K_s^0 and Λ production in laboratory frame: reasonable good description by LO Monte Carlos (CDM, MEPS) CDM with $\lambda_s = 0.3$ best, but
- both models have difficulties at small x, low p_T , η shape
- K_s^0 and Λ production in Breit frame: well described by both the MEPS and CDM predictions with $\lambda_s = 0.3$
- ratios of production cross-sections: Λ/K^0_s better described by CDM with $\lambda_s = 0.3$ K^0_s /charged hadrons better described by MEPS with $\lambda_s = 0.22$

No single combination of model and λ_s describes all data in the measured region

• no indication of baryon number transfer is observed