Jefferson lab Hall A DIS program at 12 GeV Nilanga Liyanage

University of Virginia

Outline

• Physics:

- Neutron spin structure at high x; A_n^1
- Parity violating DIS (PVDIS)
- · Semi Inclusive DIS (SIDIS)

· Instrumentation:

- •Hall A provides very high luminosities both unpolarized (1.4 \times 10³⁷ cm⁻²s⁻¹) and polarized neutron (5 \times 10³⁸ cm⁻²s⁻¹)
- Hall A has been set aside as the "special installation" hall for 12 GeV: opportunity for creative instrumentation solutions to meet very demanding experimental requirements
- Super-Bigbite spectrometer
- · Hall A solinoid spectrometer

Neutron spin structure at high $x: A_n^1$

- · test fundamental predictions of nucleon structure.
- flavor decomposition of polarized pdfs
 - > One of the highlighted experiments in the 12 GeV plan

Virtual Photon Asymmetry

$$A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{g_{1}}{F_{1}}$$

Already possible with existing equipment

- •6.6 GeV, 8.8 GeV polarized electron beams: 10 μA , Pe = 0.8
- ·Hall A polarized ³He target: 30 cm of useful length.
- ·Bigbite Spectrometer @ 30°
- ·HRS-L@ 30°

Bigbite Spectrometer in Gen

• successfully used for hall A high Q^2 Gen exp.: powerful combination of BigBite + Polarized 3 He target; up to $L\sim4.5\times10^{36}$ cm $^{-2}$ s $^{-1}$.

- •76 msr over 40 cm of target.
- •~1% momentum resolution
- •~5 mm y_tg resolution

Kinematic Coverage

With Bigbite alone

Using Bigbite with 6.6 GeV and 8.8 GeV beam ~ 500 h

Super-Bigbite spectrometer

• GEM trackers - much higher luminosity compared to Bigbite; up to $L\sim 5 \times 10^{38}$ cm⁻²s⁻¹.

- •40 msr over 40 cm of target.
- •~0.5% momentum resolution for 4 GeV electrons.
- •~5 mm y_tg resolution

Projected data: DIS

Parity Violating Deep Inelastic Scattering (PVDIS)

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[\mathbf{a}(x) + Y(y) \mathbf{b}(x) \right]$$

 $\mathbf{a}(\mathbf{x})$ and $\mathbf{b}(\mathbf{x})$ contain quark distribution functions $f_i(x)$

$$x \equiv x_{Bjorken}$$

$$y \equiv 1 - E'/E$$

$$f_i^{\pm} \equiv f_i \pm \overline{f}_i$$

$$X \equiv X_{Bjorken}$$

$$y \equiv 1 - E'/E$$

$$f_i^{\pm} \equiv f_i \pm \overline{f}_i$$

$$a(x) = \frac{\sum_{i} C_{1i} Q_i f_i^{+}(x)}{\sum_{i} Q_i^2 f_i^{+}(x)}$$

$$b(x) = \frac{\sum_{i} C_{2i} Q_i f_i^{-}(x)}{\sum_{i} Q_i^2 f_i^{+}(x)}$$

$$\mathbf{b}(x) = \frac{\sum_{i} C_{2i} Q_{i} f_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}$$

at high x

For an isoscalar target like ²H, structure functions largely cancel in the ratio at high x

$$a(x) = \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + \frac{0.6 s^{+}}{u^{+} + d^{+}} \right)$$

At high x, A_{PV} becomes independent of x, W, with well-defined SM prediction for Q² and y

$$\mathbf{b}(x) = \frac{3}{10} (2C_{2u} - C_{2d}) \left(\frac{u_{v} + d_{v}}{u^{+} + d^{+}} \right) + \cdots$$

New combination of:

Vector quark couplings C_{1a} Also axial quark couplings C₂₀

Sensitive to new physics at the TeV scale

inaccessible in elastic scattering

Physics potential

- Excellent sensitivity to C_{2u} and C_{2d}.
- Standard Model Test
- Charge Symmetry Violation (CSV)
- Higher Twist
- d/u for the Proton

PVDIS w/ Base Equipment

E08-011: PVDIS off ²H at 6 GeV

6 GeV PVDIS 3% A_d measurement:

Bands correspond to central values of <u>either</u> PDG

best fit <u>or</u> Young et al.'s best fit.

Proposal approved for 11 GeV: Factor of ~ 2 to 3 improvement

- 08-011 provides first look, at x~0.25-0.3
- Insensitive to CSV, HT, but possibly sensitive to the quark sea?
- 11 GeV, allows greater precision at higher x, but doesn't provide lever arm to fully separate QCD effects

A Design for Precision PV DIS Physics

- High Luminosity on LH₂ & LD₂
- Better than 1% errors for small bins
- *x-range 0.25-0.75*
- $W^2 > 4 \text{ GeV}^2$
- Q^2 range a factor of 2 for each x
 - (Except $x \sim 0.75$)
- Moderate running times

- Solenoid (from BaBar, CDF or CLEOII)

 contains low energy backgrounds (Moller, pions, etc)

 trajectories measured after baffles
- Fast tracking, particle ID, calorimetry, and pipeline electronics
- Precision polarimetry (0.4%)

SoLID Spectrometer

Statistical Errors (%) vs Kinematics

Strategy: sub-1% precision over broad kinematic range for sensitive **Standard Model test** *and* **detailed study of hadronic structure contributions**

Sensitivity: C₁ and C₂ Plots

0.3 0.1 GeV 0.2 0 World's data 0.1 -0.1 -0.2 -0.1 -0.5 -0.6 -0.4 C_{2u} - C_{2d} C_{1u} - C_{1d} **PVDIS** 0 PVDIS Precision Data 0.16 Qweak Cs -0.02 0.14 -0.07 -0.06 -0.05 -0.52 -0.51 -0.53 1/27/2009 C_{2u} - C_{2d}

 C_{1u} - C_{1d}

Precision on $sin^2\theta_w$

Impressive precision on $\sin^2\theta_w$ (comparable to Qweak) but real value is not sensitive to different combination of couplings

CSV with PVDIS

Parton-level charge symmetry assumed in deriving ²H

Apv Charge Symmetry Violation

$$\delta u(x) = u^p(x) - d^n(x)$$

$$\delta d(x) = d^p(x) - u^n(x)$$

- u,d quark mass difference
- electromagnetic effects

$$R_{CSV} = \frac{\delta A_{PV}(x)}{A_{PV}(x)} = 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

- Direct observation of partonlevel CSV would be very exciting!
- Important implications for high energy collider pdfs
- Could explain significant
 portion of the NuToV anomals

1/27/2009

PR-12-09-12 portion of the NuTeV anomaly 20

Higher Twist

Does higher twist fully cancel from the asymmetry?

At higher x, a more interesting higher twist effect may be evident:

$$F_2(x,Q^2)=F_2(x)(1+D(x)/Q^2)$$

- \bullet A_{PV} sensitive to diquarks: ratio of weak to electromagnetic charge depends on amount coherence
- Do diquarks have twice the x of single quarks?

$$A_{PV} = A_{PV} (1 + C_{HT}(x)/Q^2)$$

1/27/2009 PR-12

PVDIS on the Proton: d/u at High x

$$a^{P}(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

Deuteron analysis has large nuclear corrections (Yellow)

A_{PV} for the proton has no such corrections (complementary to BONUS)

The challenge is to get statistical and systematic errors ~ 2%

Neutron Transversity

- Transversity and *TMD*s
 - From exploration to precision study
 - Transversity: fundamental PDFs, tensor charge
 - ■TMDs provide 3-d structure information of the nucleon
 - Laboratory to study QCD
 - Learn about quark orbital angular momentum
 - Multi-dimensional mapping of TMDs
 - 3-d (x,z,P⊥)
 - Q2 dependence
 - multi facilities, global effort
- Demanding mesurement
 - ➤ Multi-dimension, small asymmetries, precision → very high statistics
 - ➤ High luminosity AND large acceptance needed
 - ➤ With the proposed spectrometers Hall A can do Transversity and *TMD*s: unprecedented precision

Solenoid detector for SIDIS Solenoid detector for SIDIS

SIDIS Kinematical with the

Projection vs P_T and x for π + (60 days)

- For one z bin (0.5-0.6)
- Will obtain 4
 z bins (0.3-0.7)
- Also π- at same time
- With upgraded
 PID for K+ and K-

Measurement of the Semi-Inclusive π and K electro-production in DIS regime from transversely polarized ³He target with the SBS & BB spectrometers in Hall A

G. Cates, E. Cisbani, G.B. Franklin, B. Wojtsekhowski and the SBS Collaboration http://hallaweb.jlab.org/12GeV/SuperBigBite

- Extract Sivers and Collins (and Pretzelosity) asymmetries on π and K with high statistics
- Provide 2D binning (at least) on the relevant variables: x, P_⊥ and z, for both hadrons
- Provide Q² dependence
- Explore for the first time the high x valence region (with overlap to HERMES, COMPASS, JLab6 data)

Experimental Setup and parameters

$$e^{+3}He^{\uparrow}\rightarrow e'+\pi(K)^{\pm}+X$$

BB: e-arm at 30°

 Ω = 45 msr

GEM Tracker

Gas Cherenkov

Shower

SBS:h-arm at 14°

 Ω = 50 msr

GEM tracker

excellent PID / RICH

Hadron CALO

Beam: 50 μ A, E=8.8 and 11 GeV (80% long. Pol.)

Target: 65% polarized $3He \leftarrow GEn(2)/PR-09-016$

 \Rightarrow Luminosity: 1.4 \times 10³⁷ cm⁻²s⁻¹, 0.05 sr

Event rate: ~10⁴ × HERMES 60 days of production expected stat. accuracy: 1/10 of proton HERMES

Q² coverage

We will investigate the Q² dependence of the Sivers and Collins functions, with overlap in the region of HERMES; reveal higher twist effects.

Analysis of the Q² effect will use also the results of presently running 6 GeV E06-010 Transversity experiment

Conclusion

- Proposed Super-Bigbite and SoLID spectrometers in Hall A enable a very exciting DIS program
- •Neutron spin structure at high $x: A_n^1$
 - ·test fundamental predictions of nucleon structure.
 - flavor decomposition of polarized pdfs
- Parity violating DIS (PVDIS)
 - ·Excellent sensitivity to C2u and C2d.
 - ·Test CSV at quark level.
 - ·Unique window on higher twists.
- ·Semi Inclusive DIS (SIDIS)
 - ~3 orders of magnitude improvement
 - Transversity and TMDs
 - ·Entering a new era of precision study:
 - ·3-dimentional "mapping" (x, PT and z)