Jefferson lab Hall A DIS program at 12 GeV
Nilanga Liyanage
University of Virginia
Outline

• Physics:
 • Neutron spin structure at high \(x \); \(A_n^1 \)
 • Parity violating DIS (PVDIS)
 • Semi Inclusive DIS (SIDIS)

• Instrumentation:
 • Hall A provides very high luminosities both unpolarized (1.4 \(\times \) \(10^{37} \) cm\(^{-2}\)s\(^{-1}\)) and polarized neutron (5 \(\times \) \(10^{38} \) cm\(^{-2}\)s\(^{-1}\))
 • Hall A has been set aside as the “special installation” hall for 12 GeV: opportunity for creative instrumentation solutions to meet very demanding experimental requirements

 • Super-Bigbite spectrometer
 • Hall A solinoid spectrometer
Neutron spin structure at high x: A^1_n

- test fundamental predictions of nucleon structure.
- flavor decomposition of polarized PDFs
 - One of the highlighted experiments in the 12 GeV plan
Virtual Photon Asymmetry

\[A_1 = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{g_1}{F_1} \]
A_1^n vs. x for various experiments:

- **This work**
- E142 [51]
- E154 [52]
- HERMES [50]

Graphs showing:

1. $(\Delta u + \Delta d) / (u + d)$
2. $(\Delta d + \Delta \bar{d}) / (d + \bar{d})$

Each graph has a range of curves and data points, indicating different theoretical and experimental results across the x-axis range of 0 to 1.
Already possible with existing equipment

- 6.6 GeV, 8.8 GeV polarized electron beams: 10 µA, Pe = 0.8
- Hall A polarized \(^3\)He target: 30 cm of useful length.
- Bigbite Spectrometer @ 30°
- HRS-L @ 30°
Bigbite Spectrometer in Gen

- successfully used for hall A high Q^2 Gen exp.: powerful combination of BigBite + Polarized 3He target; up to $L \sim 4.5 \times 10^{36} \text{ cm}^{-2}\text{s}^{-1}$.

- 76 msr over 40 cm of target.
- ~1% momentum resolution
- ~5 mm y_{tg} resolution
With Bigbite alone

Using Bigbite with 6.6 GeV and 8.8 GeV beam ~ 500 h
• GEM trackers - much higher luminosity compared to Bigbite; up to $L \approx 5 \times 10^{38}$ cm$^{-2}$s$^{-1}$.

• 40 msr over 40 cm of target.
• ~0.5% momentum resolution for 4 GeV electrons.
• ~5 mm y_{tg} resolution
Projected data: DIS

- 11 GeV DIS Projected for MPS: 300 hours
- 8.8 GeV DIS: MPS: 75 hours
- 6.6 GeV DIS: MPS: 25 hours
- E99-117 Results

MPS 600 hours @ 40°
Parity Violating Deep Inelastic Scattering (PVDIS)

\[A_{PV} = \frac{G_F Q^2}{\sqrt{2\pi\alpha}} \left[a(x) + Y(y) \ b(x) \right] \]

\[x \equiv x_{\text{Bjorken}} \]
\[y \equiv 1 - \frac{E'}{E} \]
\[f_i^{\pm} \equiv f_i \pm f_i \]

For an isoscalar target like ^2H, structure functions largely cancel in the ratio at high x

At high x, A_{PV} becomes independent of x, W, with well-defined SM prediction for Q^2 and y

New combination of:
- Vector quark couplings C_{1q}
- Also axial quark couplings C_{2q}

C_{2q} inaccessible in elastic scattering

Sensitive to new physics at the TeV scale
• Physics potential
 – Excellent sensitivity to C_{2u} and C_{2d}.
 – Standard Model Test
 – Charge Symmetry Violation (CSV)
 – Higher Twist
 – d/u for the Proton
E08-011: PVDIS off ^2H at 6 GeV

Proposal approved for 11 GeV:
Factor of ~ 2 to 3 improvement

- 08-011 provides first look, at $x\sim0.25-0.3$
- Insensitive to CSV, HT, but possibly sensitive to the quark sea?
- 11 GeV, allows greater precision at higher x, but doesn’t provide lever arm to fully separate QCD effects
A Design for Precision PV DIS Physics

- **High Luminosity on LH$_2$ & LD$_2$**
- **Better than 1% errors for small bins**
- **x-range 0.25-0.75**
- **$W^2 > 4$ GeV2**
- **Q^2 range a factor of 2 for each x**
 - (Except x~0.75)
- **Moderate running times**

- **Solenoid (from BaBar, CDF or CLEOII)**
 - contains low energy backgrounds (Moller, pions, etc)
 - trajectories measured after baffles
- **Fast tracking, particle ID, calorimetry, and pipeline electronics**
- **Precision polarimetry (0.4%)**
SoLID Spectrometer

- Gas Cerenkov
- Baffles
- GEM’s
Statistical Errors (%) vs Kinematics

Strategy: sub-1% precision over broad kinematic range for sensitive Standard Model test and detailed study of hadronic structure contributions

Error bar $\sigma_{A/A} (%)$ shown at center of bins in Q^2, x

4 months at 11 GeV

2 months at 6.6 GeV
Sensitivity: C_1 and C_2 Plots

World’s data

Precision Data

1/27/2009
Impressive precision on $\sin^2 \theta_w$ (comparable to Q_{weak}) but real value is not sensitive to different combination of couplings.

Constraint on contact interactions

$$\frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2 + g_{RL}^2 - g_{LR}^2|}} \approx 2.5 \text{ TeV}$$
CSV with PVDIS

Parton-level charge symmetry assumed in deriving ^2H

A_{PV}

Charge Symmetry Violation

$$\delta u(x) = u^p(x) - d^n(x)$$

• u,d quark mass difference

$$\delta d(x) = d^p(x) - u^n(x)$$

• electromagnetic effects

$$R_{CSV} = \frac{\delta A_{PV}(x)}{A_{PV}(x)} = 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

• Direct observation of parton-level CSV would be very exciting!

• Important implications for high energy collider pdfs

• Could explain significant portion of the NuTeV anomaly
Higher Twist

Does higher twist fully cancel from the asymmetry?

At higher x, a more interesting higher twist effect may be evident:

\[F_2(x,Q^2) = F_2(x)(1+D(x)/Q^2) \]

- \(A_{PV} \) sensitive to diquarks: ratio of weak to electromagnetic charge depends on amount coherence
- Do diquarks have twice the x of single quarks?

\[A_{PV} = A_{PV}(1+C_{HT}(x)/Q^2) \]
PVDIS on the Proton: d/u at High x

\[a^P(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)} \]

Deuterons analysis has large nuclear corrections (Yellow)

A_{PV} for the proton has no such corrections (complementary to BONUS)

The challenge is to get statistical and systematic errors ~ 2%

3-month run
Neutron Transversity

- Transversity and *TMDs*
 - From exploration to precision study
 - Transversity: fundamental PDFs, tensor charge
 - TMDs provide 3-d structure information of the nucleon
 - Laboratory to study QCD
 - Learn about quark orbital angular momentum
 - Multi-dimensional mapping of TMDs
 - 3-d \((x, z, P^\perp)\)
 - Q2 dependence
 - multi facilities, global effort

- Demanding measurement
 - Multi-dimension, small asymmetries, precision \(\rightarrow\) very high statistics
 - High luminosity AND large acceptance needed
 - With the proposed spectrometers Hall A can do Transversity and *TMDs*: unprecedented precision
Solenoid detector for SIDIS

GEMs

Gas Cerenkov

Calorimeter

3He target

3He target
SIDIS Kinematical with the Solenoid ($10^\circ - 170^\circ$)

- Q^2 vs x
- P_T vs x
- W vs x
- z vs x
Projection vs P_T and x for π^+ (60 days)

- For one z bin (0.5-0.6)
- Will obtain 4 z bins (0.3-0.7)
- Also π^- at same time
- With upgraded PID for K^+ and K^-
Measurement of the Semi-Inclusive π and K electro-production in DIS regime from transversely polarized 3He target with the SBS & BB spectrometers in Hall A

G. Cates, E. Cisbani, G.B. Franklin, B. Wojtsekhowski
and the SBS Collaboration

http://hallaweb.jlab.org/12GeV/SuperBigBite

- Extract Sivers and Collins (and Pretzelosity) asymmetries on π and K with high statistics
- Provide 2D binning (at least) on the relevant variables: x, P_\perp and z, for both hadrons
- Provide Q^2 dependence
- Explore for the first time the high x valence region (with overlap to HERMES, COMPASS, JLab6 data)
Experimental Setup and parameters
\[e^{+} + ^3\text{He} \rightarrow e^{'+} + \pi(K)^{\pm} + X \]

Beam: 50 μA, E=8.8 and 11 GeV (80% long. Pol.)

Target: 65% polarized 3He ⇐ GEn(2)/PR-09-016

\[\text{Luminosity: } 1.4 \times 10^{37} \text{ cm}^{-2}\text{s}^{-1} \text{, } 0.05 \text{ sr} \]

BB: e-arm at 30°
- Ω = 45 msr
- GEM Tracker
- Gas Cherenkov Shower

\[\text{⇠ GMn/PR-09-019} \]

SBS: h-arm at 14°
- Ω = 50 msr
- GEM tracker
- excellent PID / RICH
- Hadron CALO

Event rate: \(\sim 10^4 \times \text{HERMES} \)

60 days of production
expected stat. accuracy:
1/10 of proton HERMES
We will investigate the Q^2 dependence of the Sivers and Collins functions, with overlap in the region of HERMES; reveal higher twist effects. Analysis of the Q^2 effect will use also the results of presently running 6 GeV E06-010 Transversity experiment.
Conclusion

• Proposed Super-Bigbite and SoLID spectrometers in Hall A enable a very exciting DIS program
• Neutron spin structure at high x: A_1^n
 • test fundamental predictions of nucleon structure.
 • flavor decomposition of polarized pdfs
• Parity violating DIS (PVDIS)
 • Excellent sensitivity to $C2u$ and $C2d$.
 • Test CSV at quark level.
 • Unique window on higher twists.
• Semi Inclusive DIS (SIDIS)
 • ~3 orders of magnitude improvement
 • Transversity and TMDs
 • Entering a new era of precision study:
 • 3-dimentional “mapping” (x, PT and z)