DIS 2009 Spin Physics Working Group Experimental Summary

Carl Gagliardi and Gunar Schnell Experimental co-conveners

Outline

- Longitudinal spin phenomena (8 talks)
- Transverse spin phenomena (11 talks)
- Generalized parton distributions (9 talks)

Longitudinal spin phenomena

g_2^p and g_2^n in the resonance region

- Karl Silfer described new measurements of g_2^p and g_2^n in the resonance region by the RSS, E01-012, and SaGDH experiments at JLab
- "Doubles the Q^2 coverage" for g_2^p (now have 1.3 and 5 GeV²)
- Provides new tests of the Burkhardt-Cottingham sum rule

Strange quark density

- M.G. Sapozhnikov reported measurements of longitudinal polarization transfer in Lambda and anti-Lambda production by COMPASS
- Polarization transfer from the muon to the Lambda is substantial
- Found no sensitivity to the target polarization
- Results are sensitive to the strange (anti-)quark density

Strange quark polarization

- Helena Santos reported COMPASS DIS and SIDIS results for ∆s, based on the full (2002-06) deuteron data set
- SIDIS results are in good agreement with HERMES.
- SIDIS also agrees well with predictions from DSSV (except possibly for K⁻)
- Results are compatible with $\Delta s = 0$
- Conclude:
 - $-\Delta s$ (inclusive DIS) = $-0.045 \pm 0.005 \pm 0.010$
 - $-\Delta s (SIDIS) = -0.01 \pm 0.01 \pm 0.01$

DIS₂

LO analysis of deuteron data of COMPASS, Q²=3 GeV² Strange quark polarization PRELIMINARY results x(∆u_v+∆d_v) with DSS 0.3 with EMC DNS $A_{1,d}$ ×(DV+DV) 0.05 0.05 0.05 -0.2 10-2 10⁻¹ 0.4 xΔs COMPASS preliminary, 0.02 0.2 full deuteron statistics -0.04-0.06 -0.08 10⁻² 10⁻¹ 10⁻² 10⁻¹

- Helena Santos reported COMPASS DIS and SIDIS results for ∆s, based on the full (2002-06) deuteron data set
- SIDIS results are in good agreement with HERMES.
- SIDIS also agrees well with predictions from DSSV (except possibly for K⁻)
- Results are compatible with $\Delta s = 0$
- Conclude:
 - $-\Delta s$ (inclusive DIS) = $-0.045 \pm 0.005 \pm 0.010$
 - $-\Delta s (SIDIS) = -0.01 \pm 0.01 \pm 0.01$

DIS₂

$\Delta G/G$ from photon-gluon fusion

- Celso Franco reported the latest (2002-06) COMPASS results on gluon polarization in the proton from open charm measurements
- Calculate asymmetries weighted by the S/(S+B) probability
- Have recently included events from $D^0 \to K\pi\pi^0$
- Find:
 - $-\Delta G/G$ = -0.49 ± 0.27 ± 0.11 @ $\langle x_q \rangle$ = 0.11 and $\langle \mu^2 \rangle$ = 13 GeV²
 - $-\Delta G/G$ = -0.39 ± 0.24 ± 0.11 @ $\langle x_g \rangle$ = 0.11 and $\langle \mu^2 \rangle$ = 13 GeV²

$\Delta G/G$ from photon-gluon fusion COMPASS, open charm, prel., 02-06 COMPASS, high p₊, Q²>1 (GeV/c)², prel., 02-04 COMPASS, high p₊, Q²<1 (GeV/c)², prel., 02-04 HERMES, high p, all Q2 π^0 reflection $(D^0 \to K\pi\pi^0)$ in HERMES, single high p_ hadrons, all Q2, prel. COMPASS 2006 D 0 \rightarrow K $\pi\pi^0$ (D* tagged): S/(S+B) < 0.35 SMC, high p_, Q2>1 (GeV/c)2 COMPASS 2006 D $^0 ightarrow K\pi\pi^0$ (D* tagged): 0.35 <= S/(S+E N/15 (MeV/c²) 99 N/15 (MeV/c²) **Preliminary Prelimi**ı es! 200 ••••• fit with $\Delta G > 0$, $\mu^2 = 3(GeV/c)^2$ fit with $\Delta G < 0$, $\mu^2 = 3(GeV/c)^2$ M_{κπ} - M_{D0} (MeV/c²) 10-1

- Celso Franco reported the latest (2002-06) COMPASS results on gluon polarization in the proton from open charm measurements
- Calculate asymmetries weighted by the S/(S+B) probability
- Have recently included events from $D^0 \to K\pi\pi^0$
- Find:

$$-\Delta G/G$$
 = -0.49 ± 0.27 ± 0.11 @ $\langle x_g \rangle$ = 0.11 and $\langle \mu^2 \rangle$ = 13 GeV²

$$-\Delta G/G$$
 = -0.39 ± 0.24 ± 0.11 @ $\langle x_g \rangle$ = 0.11 and $\langle \mu^2 \rangle$ = 13 GeV²

ΔG from polarized pp collisions at RHIC

PHENIX STAR

- Swadhin Taneja (PHENIX, inclusive π^0) and Bernd Surrow (STAR, inclusive jets) reported the latest results on gluon polarization from A_{II} measurements in pp collisions at RHIC
- Find the gluon polarization for 0.02 < x < 0.3 is small

ΔG from polarized pp collisions at RHIC

- Swadhin Taneja (PHENIX, inclusive π^0) and Bernd Surrow (STAR, inclusive jets) reported the latest results on gluon polarization from A_{II} measurements in pp collisions at RHIC
- Find the gluon polarization for 0.02 < x < 0.3 is small

DSSV – first global analysis with RHIC pp data

de Florian et al., PRL 101, 072001

- The first global NLO analysis to include inclusive DIS, semi-inclusive DIS, and RHIC pp data on an equal footing
- RHIC data (PHENIX neutral pions, STAR jets) play a significant role in constraining the gluon polarization
- Finds a node in the gluon distribution near x ~ 0.1

Next step at RHIC: correlation measurements

$$x_1, x_2 = \frac{M}{\sqrt{s}} e^{\pm y}$$

- Direct measure of the momentum-dependence of $\Delta g(x)$
- Measurements at √s = 500 GeV will extend the reach to lower x

And the step after that: Wasymmetries

- Todd Kempel (PHENIX) and Jan Balewski (STAR) described plans to measure A_L for W production at RHIC to separate the quark and antiquark polarizations
- Will also provide a dramatic extension of Q² compared to polarized DIS and SIDIS

Transverse spin phenomena

	3	quark		
		U	L	T
n	U			
u C	L			
e o n	Т			

		quark			
		U	L	T	
n u	U	f_1			
C	L		$g_1 \longrightarrow - \longleftrightarrow$		
e o n	Т				

		quark		
		U	L	T
n u	U	f_1		
C	L		$g_1 \longrightarrow - \longleftrightarrow$	
e o n	Т			h ₁ • •

		quark		
		U	L	T
n u	J	f ₁ •		\mathbf{h}_1^{\perp} \bullet - \bullet
C	L		$g_1 \longrightarrow - \longrightarrow$	$h_{1L}^{\perp} \underbrace{\bullet} \rightarrow - \underbrace{\bullet}$
e o n	T	$\mathbf{f}_{1\mathrm{T}}^{\perp}$ \bullet - \bullet	$g_{1T}^{\perp} \stackrel{\uparrow}{\longrightarrow} - \stackrel{\downarrow}{\longleftarrow}$	$\begin{array}{c c} h_1 & & \uparrow \\ \hline \\ h_{1T} & & - & \uparrow \\ \hline \end{array}$

- Several experiments presented results involving the Sivers function, transversity, and/or the Boer-Mulders effect
- In addition, Patrizia Rossi discussed the expected sensitivity of experiments with CLAS that are underway or planned for the 12 GeV JLab upgrade

DIS 20(

First extraction of transversity

The recent first extraction of transversity came from a global analysis that combined measurements of the Collins effect by HERMES and COMPASS with measurements of the Collins fragmentation function by BELLE

Sivers function measurements on hydrogen

- Luciano Pappalardo presented HERMES measurements of the Sivers function for identified pions and kaons
- Large K⁺ amplitude suggests the Sivers function may be sizable for sea quarks

Sivers function measurements on hydrogen

- Andrea Bressan presented Sivers function measurements from COMPASS, compared to the most recent predictions from Anselmino et al.
- The predictions tend to overshoot the h⁺ asymmetries

Transversity measurement on hydrogen

- Luciano Pappalardo presented Collins effect results for identified pions and kaons
- π^+ and π^- have significant asymmetries of opposite signs. K^- has a sizable, positive asymmetry
- Also presented di-hadron asymmetries that are sensitive to transversity via the interference fragmentation function

Transversity measurement on hydrogen

- Heiner Wollny presented 2007 COMPASS results for h⁺h⁻ pair asymmetries that are sensitive to transversity through the interference fragmentation function
- Results similar to, but somewhat larger in magnitude than, HERMES
- No sign change is seen when crossing the rho mass
- Andrea Bressan presented 2007 COMPASS single-hadron results for Collins asymmetries on hydrogen with increased statistics compared to the previous preliminary results

Interference fragmentation function in pp collisions

- John Koster presented 2006-08 PHENIX results for the mid-rapidity dihadron interference fragmentation function in 200 GeV pp collisions at RHIC
- Results appear consistent with zero with current statistics
- Will provide access to transversity once the interference fragmentation function is measured in e⁺e⁻ collisions at BELLE

Forward transverse spin asymmetries at RHIC STAR

- Steve Heppelmann (STAR) and J.H. Lee (BRAHMS) presented measurements of large transverse single-spin asymmetries for forward rapidity inclusive hadron production at RHIC
- May involve a combination of Sivers and Collins effects

Forward transverse spin asymmetries at RHIC

- Steve Heppelmann (STAR) and J.H. Lee (BRAHMS) presented measurements of large transverse single-spin asymmetries for forward rapidity inclusive hadron production at RHIC
- May involve a combination of Sivers and Collins effects

Surprises in the forward direction at RHIC

- STAR finds η asymmetries are much larger than π^0 asymmetries at large x_F
- STAR also finds that A_N is increasing or constant with p_T to ~3.5 GeV/c
- BRAHMS finds that the forward charged pion asymmetries are larger when the mid-rapidity charged multiplicity is higher

Evidence for a non-zero Boer-Mulders function

- Francesca Giordano presented HERMES measurements of angular distributions in unpolarized SIDIS that are sensitive to the Boer-Mulders effect
- Andrea Bressan presented similar results for COMPASS

Boer-Mulders effect in pp and pd Drell-Yan

- Paul Reimer described FNAL E866 measurements of the Drell-Yan angular distribution in pp and pd collisions at 800 GeV
- The Lam-Tung relation appears to be satisfied, in contrast to π -induced Drell-Yan
- The angular distributions appear to be similar in pp and pd, in contrast to expectations

Search for two-photon exchange in DIS

- Alejandro Lopez Ruiz reported a HERMES search for evidence of two-photon exchange in inclusive DIS
- Interference between one-photon and two-photon exchange is expected to produce $A_N \sim 10^{-4}$ to 10^{-2}
- See no effect at the ~10⁻³ level

Generalized parton distributions

- Many of the GPD results were discussed in joint sessions with the Diffraction and Vector Mesons WG.
- Results from COMPASS were described in that summary.

Generalized Parton Distributions

Form factors

Transverse distribution of quarks in space coordinates

Parton Distribution Functions

Quark longitudinal momentum fraction distribution in the nucleon

GPDs

Correlation between transverse position and longitudinal momentum fraction of quark in the nucleon

B. Moreno - SPIN-6

DVCS results from CLAS

DIS 2009 – Spin Physics WG experimental summary

DVCS results from HERMES

S. Yaschenko - SPIN-9

Additional HERMES results from deuterium were shown by **A. Movsisyan**

DVCS cross section at H1

Unlike at fixed-target experiments, DVCS at H1 not highly suppressed compared to Bethe-Heitler

→ DVCS cross section measurement possible

L. Schoeffel - SPIN-5

Deeply-virtual meson production

Vector mesons (ρ, ϕ, ω) :

Pseudo-scalar mesons (π^0, η) : H

Vector mesons		Pseudoscalar mesons	
$ ho^0$	2u+d	π^0	2∆u+∆d
$ ho^{+}$	u-d	η	2∆u-∆d
ω	2u-d		

Flavour decomposition

Exclusive ρ^+ production at CLAS

A. Fradi - SPIN-5

Exclusive ρ^0 production at CLAS

Longitudinal cross section

Exclusive ρ^0 production at CLAS

Helicity structure of DVMP

$$rac{d\sigma}{dx_B \; dQ^2 \; dt \; d\phi_s \; d\phi \; d\cos artheta \; darphi}$$

$$\sim rac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi)$$

$$W = W_{UU} + P_{UU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}$$

angular decay distribution parameterized by Spin-Density Matrix Elements (SDMEs)

A. Rostomyan - SPIN-5 | W.-D. Nowak - SPIN-6

ρ^0 spin-density matrix elements from HERMES

W.-D. Nowak - SPIN-6

A. Rostomyan - SPIN-5

Conclusion

- It's been more than 20 years since EMC gave us the "spin crisis". We've learned a huge amount since then. But we still haven't found the rest of the proton spin.
- Many important new results toward this quest were presented during the Spin Working Group sessions
- This summary has only been able to highlight a small subset
- Check the talks on the web for additional results.
- THANKS TO ALL THE SPEAKERS !!!