

LHCb, firs measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

First measurements with the LHCb experiment

Markward Britsch, for the LHCb collaboration

Max-Planck-Institut für Kernphysik, Heidelberg

2009-4-27, DIS 2009 Madrid

Outline

2

LHCb, first measurements

Markward Britsch

Physics topic

Inclusive production

Identified particles

Conclusion

1 Introduction

3 Inclusive production

Physics topics

4 Cross section ratios for identified particles

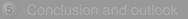
Outline

LHCb, first measurements

Markward Britsch

Introduction

Physics topics


Inclusive production

Identified particles

Conclusion

1 Introduction

Cross section ratios for identified particle

LHCb – an experiment at the LHC

LHCb, first measurements

Markward Britsch

Introduction

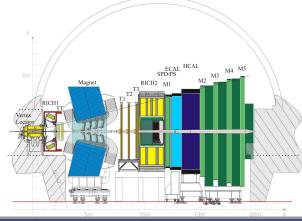
Physics topics

Inclusive production

Identified particles

Conclusion

- precision measurements of CP violation & rare decays
 heavy flavor physics
- baryon asymmetry \rightarrow more CP violation than in the SM
 - sensitivity to new physics particles from loop diagrams
- most bs produced in forward (backward) direction
- forward spectrometer, pseudo rapidity $1.9 < \eta < 4.9$


The LHCb experiment

- LHCb, first measurements
- Markward Britsch

Introduction

- Physics topics
- Inclusive production
- Identified particles
- Conclusion

- good vertex resolution
- dedicated triggers
- good particle identification (PID)

Markward Britsch (MPIK)

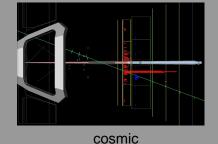
LHCb, first measurements

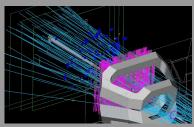
LHCb, first measurements

Markward Britsch

Introduction

Physics topics


Inclusive production


Identified particles

Conclusion

used events

- cosmics
- beam–gas
- o beam on collimator

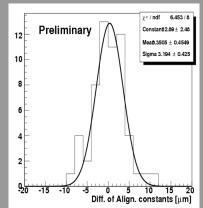
beam-collimator

Markward Britsch (MPIK)

LHCb, first measurements

LHCb, first measurements

Markward Britsch


Introduction

Physics topics

Inclusive productior

Identified particles

- used events
 - cosmics
 - beam–gas
 - beam on collimator
- VeLo alignment (beam on collimator)
 - consistent with survey to 10 μm
 - $\sim \sim$ 5 μ m x, y translations
 - $\sim \sim$ 200 μ rad z-rotation

_HCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

- used events
 - cosmics
 - beam–gas
 - beam on collimator
- VeLo alignment (beam on collimator)
 - consistent with survey to 10 μm
 - $\sim \sim$ 5 μ m x, y translations
 - $\circ~\sim$ 200 μ rad z-rotation
- time alignment of muon chambers (cosmics)

LHCb, first measurements

Markward Britsch

Introductior

Physics topics

Inclusive productior

Identified particles

Conclusion

6/43

HCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

- used events
 - cosmics
 - beam–gas
 - beam on collimator
- VeLo alignment (beam on collimator)
 - consistent with survey to 10 μm
 - $\sim \sim$ 5 μ m x, y translations
 - $\circ~\sim$ 200 μ rad z-rotation
- time alignment of muon chambers (cosmics)
 - backward tracks skewed
 - forward tracks time aligned
 - \circ resolution \sim 1 ns

Full Experimental System Test (FEST)

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

- inject raw Monte Carlo events into data acquisition chain as if coming from readout boards
- test everything except for the detector itself
- including:
 - o run control
 - o data stream, event building and high level trigger
 - data monitoring
 - databases
 - data storage
- 1.9 kHz data logging achieved steadily

The LHC conditions

_HCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

Nominal conditions:

- LHC: *pp*-collider, $\sqrt{s} = 14$ TeV
- 2808 bunches filled
- nominal luminosity: 10³⁴ cm⁻²s⁻¹
- less strong focusing for LHCb: $2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Expected 2009/2010 conditions:

- $\sqrt{s} = 8 10$ TeV
- up to 414 bunches filled
- $\,\circ\,$ luminosity, up to: $\sim 10^{32}~cm^{-2}s^{-1}$
- \rightarrow start of full LHCb physics program possible in 2009/2010

Commissioning for physics analyses

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

- early analyses as stepping stone for heavy flavor
- interesting in its own right
- basis for further investigations (e.g., MC tuning for all LHC experiments)

See also other LHCb contributions on this conference:

- Iuminosity determination: F. De Lorenzi
- low-*x* physics: J. Anderson
- W/Z production: S. Traynor
- heavy quark physics: J. He, J. Albrecht, M. Needham

Following: Focus on minimum bias day one physics

First measurements with minimum bias data

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

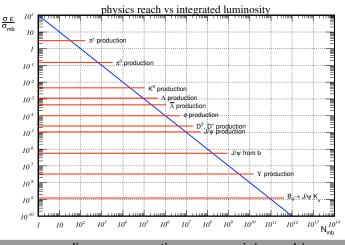
Inclusive production

Identified particles

- w/o trigger (minimum bias trigger)
- logging rate of 2 kHz
- o first collisions: expect 10⁸ events recorded in a day
- use only tracking, no particle identification (PID)
- particle ratios (charged tracks, K⁰_s, ∧, D)
 → most systematics cancel, no luminosity needed
- MC used here: 9.5 · 10⁶ events, produced 2006, 14 TeV

Prospects for minimum bias physics

Markward Britsch


Introduction

Inclusive productior

Identified particles

Conclusion

 σ – corresponding cross section, $\sigma_{\rm mb}$ – minimum bias cross section, ε – efficiencies

Outline

2

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

Introduction

Inclusivo production

Physics topics

Cross section ratios for identified particles

Conclusion and outlook

Physics topics

- LHCb, first measurements
- Markward Britsch
- Introduction
- Physics topics
- Inclusive production
- Identified particles
- Conclusion

- inclusive production
- strangeness production
- charm signals
- stepping stone to:
 - B-decays with K_s^0 as daughter
 - radiative *b*-decays ($\Lambda_b \rightarrow \Lambda \gamma$)
 - b-baryon spectroscopy
- input for Monte Carlo tuning
- test fragmentation models for multi particle production

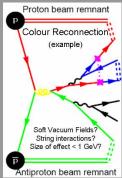
Elements of multi particle production

LHCb, firs measurements

Markward Britsch

Introduction

Physics topics


Inclusive production

Identified particles

Conclusion

multiple parton interaction (MPI) – important at LHC

- fragmentation
- color (re)connection
- new models exist

plot by Peter Scands

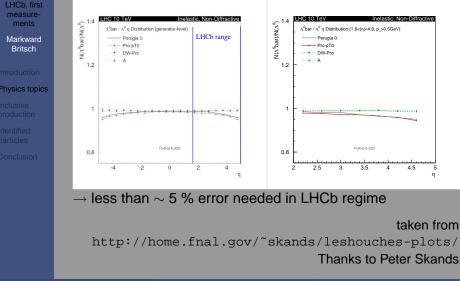
Experimental approach

LHCb, first measurements

Markward Britsch

Introduction

Physics topics


Inclusive production

Identified particles

- strangeness is unique probe for fragmentation (created in fragmentation, medium s-quark mass)
- some new models predict the beam baryon number to reach lower η (at low p_t)
 - $\circ\,$ look for strange baryon to anti-baryon ratios at low p_t and medium $\eta\,$
 - this is the regime of LHCb!

Example: predictions for $\frac{\overline{\Lambda}}{\overline{\Lambda}}$

Outline

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

) Introduction

3 Inclusive production

Cross section ratios for identified particles

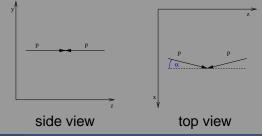
Conclusion and outlook

Charged track ratios

LHCb, first measurements

Markward Britsch

Introduction


Physics topics

Inclusive production

Identified particles

Conclusion

- 1 million minimum bias events used
- range 100 MeV $< p_t < 8000$ MeV, 1.8 $< \eta < 5.1$
- minimal requirement: working main tracker
- vital for understanding charge asymmetries
- use for Monte Carlo tuning, comparison w/ fragmentation models
- studies assume beam crossing angle of 2 · 0.285 mrad

Markward Britsch (MPIK)

LHCb, first measurements

Compare MC truth to reconstructed

_HCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

MC truth used:

- only events with exactly one primary vertex (PV)
- no elastic and single diffractive events
- long lived particles (au > 1 ns)
- coming from PV or from short lived particle from PV

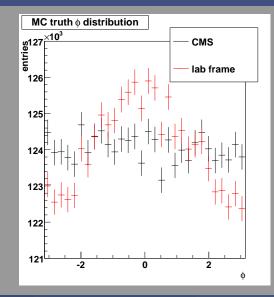
Selecting reconstructed tracks:

- only events with exactly one PV
- tracks from PV (impact parameter < 0.15 mm)
- tracks with hits in both VeLo and main tracker

MC true azimuthal angle distribution

LHCb, first measurements

Markward Britsch


Introduction

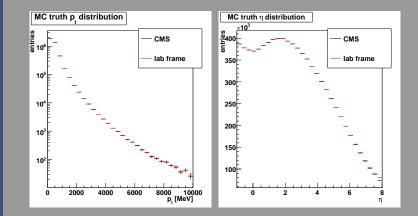
Physics topics

Inclusive production

Identified particles

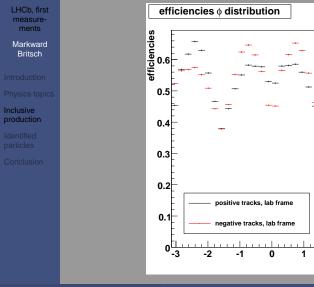
Conclusion

MC true p_t , η distributions


LHCb, first measurements

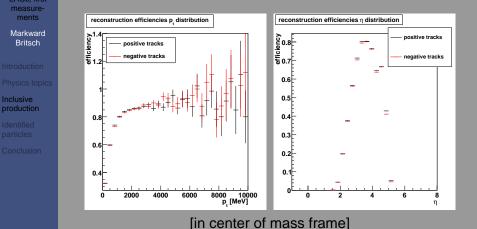
Markward Britsch

Introduction Physics topics


Inclusive production

Identified particles

Reconstruction efficiencies in azimuthal angle


Markward Britsch (MPIK)

2

3

Reconstruction efficiencies

LHCb, first measure-

Markward Britsch

Introduction Physics topics

Inclusive production

Identified particles

Conclusion

Charged track ratios

ratio of tracks p distribution ratio of tracks n distribution (-)1.5 y(+) 1.4 (-)ų(+)u 1.15 econstructed reconstructed MC truth MC truth 1.3 1 1.2 1. 1.05 0.9 0.8 0.95 07 0.9 p [MeV] 2000 4000 6000 8000 2 6 [in center of mass frame]

For most bins a MC efficiency correction of \lesssim 5 % needed. Even if we would trust the MC only to 20 % this would give a systematic error of \sim 1 %.

Markward Britsch (MPIK)

LHCb, first measurements

Outline

LHCb, first measurements

Markward Britsch

Introduction Physics topics Inclusive

Identified particles

Conclusion

) Introduction

) Inclusive production

Cross section ratios for identified particles

Conclusion and outlook

Strange particle selection

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

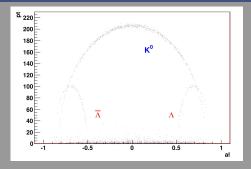
Inclusive production

Identified particles

- \circ use decays $K^0_s o \pi^+\pi^-,\, \Lambda o p\pi^-,\, ar\Lambda o ar p\pi^+$
- candidates are pairs of oppositely charged tracks
- two selection variants:
 - here: no significance $\left(\frac{x}{\sigma_{x}}\right)$ cuts
 - later: use cuts on significances to improve sensitivity
- 9.5 million minimum bias events used
- minimal requirements: working vertex detector (VeLo) and main tracker
- check of momentum calibration
- important for RICH calibration

Armenteros-Podolanski plot

LHCb, first measurements


Markward Britsch

Physics topic

production

Identified particles

Conclusion

*p*_{t,wrt mother} of decay products

asymmetry of longitudinal momenta of decay products,

i.e., (+,-)-track:
$$al = \alpha = \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-}$$

PID by relativistic kinematics – RICH calibration Cuts: distance of closest approach (DoCA) < 0.1 mm, $ct \ge 4$ mm, impact parameter (IP) ≤ 0.1 mm

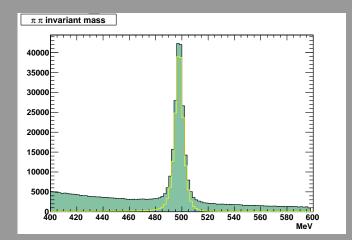
Markward Britsch (MPIK)

LHCb, first measurements

$K_{\rm s}^0$ signals

LHCb, first measurements

Markward Britsch


Introduction

Physics topics

Inclusive production

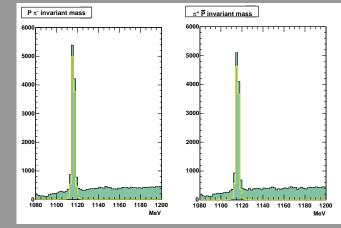
Identified particles

Conclusion

Cuts: DoCA \leq 0.2 mm, *ct* \geq 4 mm

∧, ⊼ signals

LHCb, first measurements


Markward Britsch

Introduction Physics topics

Inclusive production

Identified particles

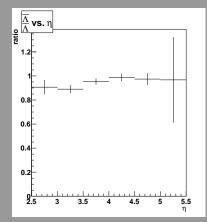
Conclusion

Cuts: DoCA \leq 0.3 mm, $ct \geq$ 4 mm, IP \leq 0.1 mm, $p_{t, \text{wrt mother}} \geq$ 10 MeV

Markward Britsch (MPIK)

2009-4-27 29 / 43

measurements


Markward Britsch

Physics topi

Inclusive production

Identified particles

Conclusion

 \sim 4 % statistical error for ratios \rightarrow 1.3 % error when extrapolated to 100 M events

 \Rightarrow we will be able to decide between new and old models

Markward Britsch (MPIK)

LHCb, first measurements

D-meson selection

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

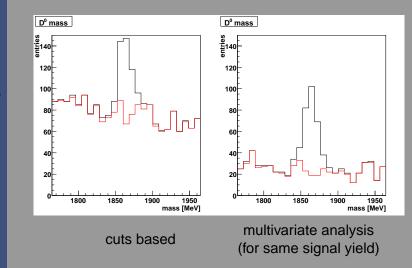
• similar to strange particles

$$\circ~ {\it D}^{0}
ightarrow {\it K}^{-} \pi^{+}$$
 and cc, ${\it D}^{\pm}
ightarrow {\it K}^{\mp} \pi^{\pm} \pi^{\pm}$

use cuts based and multivariate analysis (MVA)¹

- minimal requirement: well working VeLo, main tracker
- only geometric and kinematic cuts (no significances)
- still no PID used!

¹Britsch, Gagunashvili, Schmelling ACAT 2008


$D^0 \rightarrow K^- \pi^+$, 9.5 M events

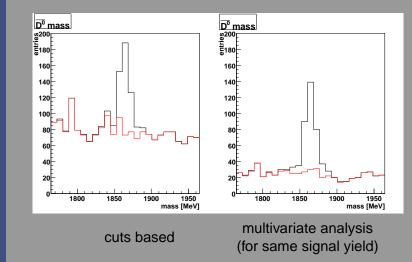
LHCb, first measure-

Markward Britsch

Introduction Physics topics Inclusive

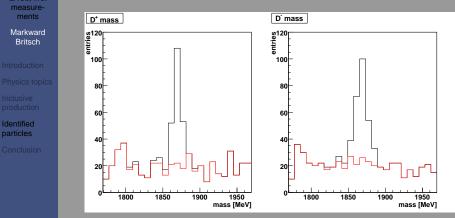
Identified particles

$\overline{D^0} ightarrow K^+ \pi^-$, 9.5 M events


LHCb, first measurements

Markward Britsch

Introduction Physics topics Inclusive


Identified particles

Conclusion

$D^{\pm} ightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$, 9.5 M events

both cuts based

Expected sensitivity on D selection

LHCb, first measurements

Markward Britsch

Introduction

Inclusive production

Identified particles

Conclusion

about 200 particles for each charm species

- 2000 each expected for 100 M events
- $\,\circ\,$ MVA has reduced the background by a factor of \sim 3

Expected sensitivity on D selection

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

- about 200 particles for each charm species
- 2000 each expected for 100 M events
- $\,\circ\,$ MVA has reduced the background by a factor of ~3

For $p_t < 12$ GeV, 1.8 < y < 4.5, 100 M events:

- expect error on $\frac{\overline{D^0}}{\overline{D^0}}$ cuts based: 7 %
- expect error on $\frac{\overline{D^0}}{\overline{D^0}}$ MVA: 5 %
- expect error on $\frac{D^-}{D^+}$ cuts based: 6 %

Expected sensitivity on D selection

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

- about 200 particles for each charm species
- 2000 each expected for 100 M events
- $\,\circ\,$ MVA has reduced the background by a factor of ~3

For $p_t < 12$ GeV, 1.8 < y < 4.5, 100 M events:

- expect error on $\frac{\overline{D^0}}{\overline{D^0}}$ cuts based: 7 %
- expect error on $\frac{\overline{D^0}}{D^0}$ MVA: 5 %
- expect error on $\frac{D^-}{D^+}$ cuts based: 6 %

More charm physics at LHCb, see talk by M. Needham, Heavy Flavors session, Wednesday

Outline

LHCb, first measurements

Markward Britsch

Introduction Physics topic Inclusive production

Identified particles

Conclusion

) Introduction

B Inclusive production

Cross section ratios for identified particles

Conclusion and outlook

Conclusion and outlook

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

With first 10⁸ minimum bias events (one day of running):

- $\circ\,$ get charged track ratio distributions with \sim 1 % error
- probe fragmentation models by strange particle ratios
- also important for MC tuning
- $_{\odot} \sim$ 2000 $D^{0/\pm}$, ratios with \sim 5 % error

Conclusion and outlook

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

With first 10⁸ minimum bias events (one day of running):

- $\circ\,$ get charged track ratio distributions with \sim 1 % error
- probe fragmentation models by strange particle ratios
- also important for MC tuning
- $_{\odot} \sim$ 2000 $D^{0/\pm}$, ratios with \sim 5 % error

Outlook:

- o more detailed MC studies
- cascades ratios (Ξ^- , Ω^-)
- look for *b*-baryons $(\Lambda_b, \Xi_b, \ldots)$
- cross section measurements

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive productior

Identified particles

Conclusion

backup slides

Markward Britsch (MPIK)

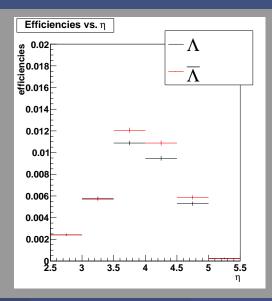
LHCb, first measurements

2009-4-27 38 / 43

$\overline{\Lambda}$, Λ efficiencies

LHCb, first measurements

Markward Britsch


Introduction

Physics topics

Inclusive productio

Identified particles

Conclusion

Markward Britsch (MPIK)

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive productior

Identified particles

Conclusion

using RIPPER classifier, rule based

```
(IPpi >= 1.039316) and (DoCA <= 0.307358)
and (IP <= 0.270767) and (IPp >=
0.800645)
=> class=Lambda
(IPpi >= 0.637403) and (DoCA <= 0.159043)
and (IP <= 0.12081) and (ptpi >=
149.2332) and (IP >= 0.003371)
=> class=Lambda
=> class=BG
```


LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive production

Identified particles

Conclusion

- using RIPPER classifier, rule based
- introduce cost to change outcome

	pred. BG	pred. signal	
tr. BG	0	C(BG, s)	
tr. signal	C (s, BG)	0	

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive productior

Identified particles

Conclusion

• using RIPPER classifier, rule based

introduce cost to change outcome

• the cost is introduced by weights

- LHCb, first measurements
- Markward Britsch
- Introduction
- Physics topics
- Inclusive productior
- Identified particles
- Conclusion

- using RIPPER classifier, rule based
- introduce cost to change outcome
- the cost is introduced by weights
- use bagging to stabilize algorithm: produce a set of new training samples by drawing with replacement from original set

orig. sample	1	2	3	4	5	
1 st iteration	2	5	1	1	4	
2 nd iteration	5	3	2	2	4	
:						
r th iteration 1 1 5 1 4						

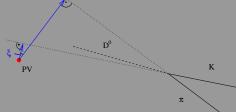
D-meson cuts

LHCb, first measurements

Markward Britsch

Introduction

Physics topics


Inclusive production

Identified particles

Conclusion

track hits

- transverse momenta
- flight-length, distance of closest approach (DoCA)
- impact parameters w.r.t the primary vertex
- $\cos \xi$

$D^0 \rightarrow K^- \pi^+$ -Cuts

- LHCb, first measurements
- Markward Britsch
- Introduction
- Physics topics
- Inclusive production
- Identified particles
- Conclusion

- long tracks only
- pion/kaon track #LHCbIDs > 27
- *pt* > 700 MeV
- *pt*_{daughters} > 500 MeV
- $\cos \xi < -0.7$
- FL > 1.5 mm
- *DoCA* < 0.07 mm

$$\circ \log \frac{DoCA}{FL} < -4.0$$

- IP < 0.08 mm
- IP_{daughters} > 0.05 mm

$$\log\left(rac{IP_K^2+IP_\pi^2}{IP^2}
ight)>3.0$$

 ξ : angle between impact vectors

$D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$ -Cuts

LHCb, first measurements

Markward Britsch

Introduction

Physics topics

Inclusive productior

Identified particles

Conclusion

- long tracks only
- pion tracks #LHCbIDs > 30
- kaon track #LHCbIDs > 30
- *pt* > 2000 MeV
- *pt*_{daughters} > 400 MeV
- *FL* > 5.0 mm
- $FL\frac{M}{E} > 0.2 \text{ mm}$
- DoCA < 0.1 mm

$$\circ \log rac{DoCA}{FL} < -5.0$$

- *IP* < 0.1 mm
- $IP_{\pi s} > 0.1 \text{ mm}$

•
$$IP_{K} > 0.05 \text{ mm}$$

• $\log\left(\frac{IP_{K}^{2} + IP_{\pi_{1}}^{2} + IP_{\pi_{2}}^{2}}{IP^{2}}\right) > 3.5$

Markward Britsch (MPIK)