On hadronisation effects in QCD jets

Yazid Delenda

Université Hadj Lakhdar (Batna) - Algeria

Work done in collaboration with Mrinal Dasgupta

DIS 2009 Madrid, 29th April 2009

Outline

Motivation

Jets at hadron colliders

Analytical estimates of non-perturbative corrections
Hadronisation, the underlying event and jets

Jet p_t in sequential recombination and cone algorithms

Jet p_t and hadronisation

Jet p_t in sequential recombination algorithms

Jet p_t in the SISCone algorithm

Results

Jet p_t and gluon decay Results Comparison to Monte Carlos

Various algorithms are widely used to determine final-state jets:

- ▶ Sequential recombination: k_t , anti- k_t , Cambridge/Aachen, ... Catani et al '93, Ellis et al '93, Cacciari et al '08, Dokshitzer et al '97, Wobisch et al '99
- ► Cone algorithms: Mid-point, SISCone, ... Sterman & Weinberg 1977, ..., Salam & Soyer 2007

Jet-quantities are then computed for different purposes:

- ► Search for new physics: (Higgs, SUSY particles, ...)
- ▶ Improve previous measurements: (pdfs, α_s , ...)

Amongst the most important jet-quantities at the LHC is the transverse momentum (p_t) of a high- p_t jet.

Various algorithms are widely used to determine final-state jets:

- ▶ Sequential recombination: k_t , anti- k_t , Cambridge/Aachen, ... Catani et al '93, Ellis et al '93, Cacciari et al '08, Dokshitzer et al '97, Wobisch et al '99
- ► Cone algorithms: Mid-point, SISCone, ... Sterman & Weinberg 1977, ..., Salam & Soyer 2007

Jet-quantities are then computed for different purposes:

- Search for new physics: (Higgs, SUSY particles, ...)
- ▶ Improve previous measurements: (pdfs, α_s , ...)

Amongst the most important jet-quantities at the LHC is the transverse momentum (p_t) of a high- p_t jet.

Various algorithms are widely used to determine final-state jets:

- ▶ Sequential recombination: k_t , anti- k_t , Cambridge/Aachen, ... Catani et al '93, Ellis et al '93, Cacciari et al '08, Dokshitzer et al '97, Wobisch et al '99
- ► Cone algorithms: Mid-point, SISCone, ... Sterman & Weinberg 1977, ..., Salam & Soyer 2007

Jet-quantities are then computed for different purposes:

- Search for new physics: (Higgs, SUSY particles, ...)
- ▶ Improve previous measurements: (pdfs, α_s , ...)

Amongst the most important jet-quantities at the LHC is the transverse momentum (p_t) of a high- p_t jet.

Analytical estimates of non-perturbative corrections Hadronisation, the underlying event and jets

Jets at hadron colliders Challenge at the LHC

The LHC has many complications that cannot be dealt with using the current theoretical techniques (at hadron level):

- Perturbative aspects
 - Colour and geometry structure of a ≥ 4-jet hadronic event is not so simple
 - ► Non-global logs, super-leading logs
- Non-perturbative aspects
 - Underlying event
 - ▶ Pile-up (higher beam energy ⇒ more of it)
 - Hadronisation

let alone the situation at jet-level

Challenge at the LHC

The LHC has many complications that cannot be dealt with using the current theoretical techniques (at hadron level):

- Perturbative aspects
 - ▶ Colour and geometry structure of a ≥ 4-jet hadronic event is not so simple
 - ► Non-global logs, super-leading logs
- Non-perturbative aspects
 - Underlying event
 - ▶ Pile-up (higher beam energy ⇒ more of it)
 - Hadronisation

let alone the situation at jet-level

Challenge at the LHC

The LHC has many complications that cannot be dealt with using the current theoretical techniques (at hadron level):

- Perturbative aspects
 - ▶ Colour and geometry structure of a ≥ 4-jet hadronic event is not so simple
 - Non-global logs, super-leading logs
- ► Non-perturbative aspects
 - Underlying event
 - ▶ Pile-up (higher beam energy ⇒ more of it)
 - Hadronisation

let alone the situation at jet-level

Challenge at the LHC

The LHC has many complications that cannot be dealt with using the current theoretical techniques (at hadron level):

- Perturbative aspects
 - ▶ Colour and geometry structure of a ≥ 4-jet hadronic event is not so simple
 - Non-global logs, super-leading logs
- ► Non-perturbative aspects
 - Underlying event
 - Pile-up (higher beam energy ⇒ more of it)
 - Hadronisation

let alone the situation at jet-level.

Analytical estimates of non-perturbative corrections Hadronisation, the underlying event and jets

Jets at hadron colliders

Don't we have Monte Carlos (PYTHIA, HERWIG,...) to handle this kind trouble?

Yes. but:

Analytical studies complement Monte Carlos.

For instance analytical estimates give answers to:

How do non-perturbative effects depend on jet size? Can we disentangle Underlying Event and Hadronisation?

for us to make **best choice of jet radius**. Dasgupta et al, 2007.

Analytical estimates of non-perturbative corrections Hadronisation, the underlying event and jets

Jets at hadron colliders

Don't we have Monte Carlos (PYTHIA, HERWIG,...) to handle this kind trouble?

Yes, but:

Analytical studies complement Monte Carlos.

For instance analytical estimates give answers to:

How do non-perturbative effects depend on jet size?

Can we disentangle Underlying Event and Hadronisation?

for us to make best choice of jet radius. Dasgupta et al, 2007

Analytical estimates of non-perturbative corrections Hadronisation, the underlying event and jets

Jets at hadron colliders

Don't we have Monte Carlos (PYTHIA, HERWIG,...) to handle this kind trouble?

Yes, but:

Analytical studies complement Monte Carlos.

For instance analytical estimates give answers to:

How do non-perturbative effects depend on jet size?

Can we disentangle Underlying Event and Hadronisation?

for us to make best choice of jet radius. Dasgupta et al, 2007.

Analytical estimates of non-perturbative corrections Hadronisation, the underlying event and jets

Jets at hadron colliders

Don't we have Monte Carlos (PYTHIA, HERWIG,...) to handle this kind trouble?

Yes, but:

Analytical studies complement Monte Carlos.

For instance analytical estimates give answers to:

How do non-perturbative effects depend on jet size?

Can we disentangle Underlying Event and Hadronisation?

for us to make **best choice of jet radius**. Dasgupta et al, 2007.

Analytical estimates of non-perturbative corrections DW renormalon model and event shapes at LEP and HERA

Hadronisation is familiar from LEP and HERA event-shape variables: Great success up to 3-jet level (FULL NLL + NLO + 1/Q); Dasgupta et al '02, '03, Banfi et al '07

Thanks to renormalon model: Beneke 98', Dokshitzer et al '95,'96,'98

Source of hadronisation is a "gluer" with $k_t \sim \Lambda_{\sf QCD}.$ To parameterise such non-perturbative emission, assume a universal infrared-finite (measurable) coupling parameter:

$$\alpha_0 = \int_0^{\mu_I} \frac{dk_t}{\mu_I} \alpha_s(k_t),$$

Perform analytical estimates using this notion in one event-shape; and fit to data to α_0 .

Analytical estimates of non-perturbative corrections DW renormalon model and event shapes at LEP and HERA

Hadronisation is familiar from LEP and HERA event-shape variables: Great success up to 3-jet level (FULL NLL + NLO + 1/Q); Dasgupta et al '02, '03, Banfi et al '07

Thanks to renormalon model: Beneke 98', Dokshitzer et al '95,'96,'98 Source of hadronisation is a "gluer" with $k_t \sim \Lambda_{\rm QCD}$.

To parameterise such non-perturbative emission, assume a universal infrared-finite (measurable) coupling parameter:

$$\alpha_0 = \int_0^{\mu_I} \frac{dk_t}{\mu_I} \alpha_s(k_t),$$

Perform analytical estimates using this notion in one event-shape; and fit to data to extract α_0 .

Ose on on another event-shape.

Analytical estimates of non-perturbative corrections

DW renormalon model and event shapes at LEP and HERA

Hadronisation is familiar from LEP and HERA event-shape variables: Great success up to 3-jet level (FULL NLL + NLO + 1/Q); Dasgupta et al '02, '03, Banfi et al '07

Thanks to renormalon model: Beneke 98', Dokshitzer et al '95,'96,'98

Source of hadronisation is a "gluer" with $k_t \sim \Lambda_{\rm QCD}$.

To parameterise such non-perturbative emission, assume a universal infrared-finite (measurable) coupling parameter:

$$\alpha_0 = \int_0^{\mu_I} \frac{dk_t}{\mu_I} \alpha_s(k_t),$$

Perform analytical estimates using this notion in one event-shape; and fit to data to extract α_0 .

Use α_0 on another event-shape.

Analytical estimates of non-perturbative corrections DW renormalon model and event shapes at LEP and HERA

Hadronisation is familiar from LEP and HERA event-shape variables: Great success up to 3-jet level (FULL NLL + NLO + 1/Q); Dasgupta et al '02, '03, Banfi et al '07

Thanks to renormalon model: Beneke 98', Dokshitzer et al '95,'96,'98

Source of hadronisation is a "gluer" with $k_t \sim \Lambda_{\rm QCD}$.

To parameterise such non-perturbative emission, assume a universal infrared-finite (measurable) coupling parameter:

$$\alpha_0 = \int_0^{\mu_I} \frac{dk_t}{\mu_I} \alpha_s(k_t),$$

Perform analytical estimates using this notion in one event-shape; and fit to data to extract α_0 .

Use α_0 on another event-shape.

Analytical estimates of non-perturbative corrections DW renormalon model and event shapes at LEP and HERA

Hadronisation is familiar from LEP and HERA event-shape variables: Great success up to 3-jet level (FULL NLL + NLO + 1/Q); Dasgupta et al '02, '03, Banfi et al '07

Thanks to renormalon model: Beneke 98', Dokshitzer et al '95,'96,'98 Source of hadronisation is a "gluer" with $k_t \sim \Lambda_{\rm QCD}$.

To parameterise such non-perturbative emission, assume a universal infrared-finite (measurable) coupling parameter:

$$\alpha_0 = \int_0^{\mu_I} \frac{dk_t}{\mu_I} \alpha_s(k_t),$$

Perform analytical estimates using this notion in one event-shape; and fit to data to extract α_0 .

Use α_0 on another event-shape.

Analytical estimates of non-perturbative corrections Event shape distributions at LEP and HERA

Dasgupta and Salam, 2003

Analytical estimates of non-perturbative corrections Event shape distributions at LEP and HERA

Dasgupta and Salam, 2003

Great Success!

Analytical estimates of non-perturbative corrections

Now that the era of the LHC is due, we should apply what we learned from $\ensuremath{\mathsf{HERA}/\mathsf{LEP}}$

Recently we provided a first analytical estimate for the power corrections to away-from-jet energy flow in hadron-hadron collisions.

Dasgupta and Delenda, 2007

An interesting result was obtained by Dasgupta et al (2007) for non-perturbative effects on QCD jets (δp_t of a jet due to NP effects in various jet algorithms):

- ▶ Underlying event scales as R^2 (feasible since the smaller the jet area the less it is polluted)
- ► Hadronisation scales as 1/R manifestation of collinear singularity

Also universality of hadronisation corrections (coefficient of 1/R) is maintained at single gluon level.

However two-loop effects are important. Nason & Seymour '95, Dokshitzer et al 98

An interesting result was obtained by Dasgupta et al (2007) for non-perturbative effects on QCD jets (δp_t of a jet due to NP effects in various jet algorithms):

- ▶ Underlying event scales as R^2 (feasible since the smaller the jet area the less it is polluted)
- ► Hadronisation scales as 1/R manifestation of collinear singularity

Also universality of hadronisation corrections (coefficient of 1/R) is maintained at single gluon level.

However two-loop effects are important. Nason & Seymour '95, Dokshitzer et al 98

An interesting result was obtained by Dasgupta et al (2007) for non-perturbative effects on QCD jets (δp_t of a jet due to NP effects in various jet algorithms):

- ▶ Underlying event scales as R^2 (feasible since the smaller the jet area the less it is polluted)
- ▶ Hadronisation scales as 1/R manifestation of collinear singularity

Also universality of hadronisation corrections (coefficient of 1/R) is maintained at single gluon level.

However two-loop effects are important. Nason & Seymour '95, Dokshitzer et al 98

An interesting result was obtained by Dasgupta et al (2007) for non-perturbative effects on QCD jets (δp_t of a jet due to NP effects in various jet algorithms):

- ▶ Underlying event scales as R^2 (feasible since the smaller the jet area the less it is polluted)
- ▶ Hadronisation scales as 1/R manifestation of collinear singularity

Also universality of hadronisation corrections (coefficient of 1/R) is maintained at single gluon level.

However two-loop effects are important. Nason & Seymour '95, Dokshitzer et al 98

How does hadronisation affect the p_t of a jet?

The change in the p_t of a jet due to "gluer" emission

To leading-order in R, a jet changes it transverse momentum if it emits a gluon outside of it, thus:

$$\delta p_t = \sum_{i \notin \text{jet}} k_{ti},$$

$$= k_{t1} \Xi_{\text{out}}(k_1) + k_{t2} \Xi_{\text{out}}(k_2) + \cdots$$

The $\Xi_{\text{out}}(k_i)$ is the condition that gluon k_i ends up outside the hard jet after the application of the jet algorithm.

How does hadronisation affect the p_t of a jet?

The change in the p_t of a jet due to "gluer" emission

To leading-order in R, a jet changes it transverse momentum if it emits a gluon outside of it, thus:

$$\delta p_t = \sum_{i \notin \text{jet}} k_{ti},$$

$$= k_{t1} \Xi_{\text{out}}(k_1) + k_{t2} \Xi_{\text{out}}(k_2) + \cdots$$

The $\Xi_{\text{out}}(k_i)$ is the condition that gluon k_i ends up outside the hard jet after the application of the jet algorithm.

Jet p_t in sequential recombination algorithms

Iterate until all objects are removed

- ▶ Define $d_{ij} = \min\left(k_{ti}^p, k_{tj}^p\right)\left(\delta\eta_{ij}^2 + \delta\phi_{ij}^2\right)$; $d_{iB} = k_{ti}^pR^2$.
- lacktriangleright Search for smallest of all distances, $d_{\min}.$
- ▶ If $d_{\min} = d_{iB}$, object i is a jet and is removed.
- ▶ If $d_{\min} = d_{ij}$, objects i and j are merged.

p=-2 for anti- k_t algo \Rightarrow clustering starts with hardest. Gluon 1 ends up outside jet with:

$$\Xi_{\mathrm{out}}(k_1) = \Theta_{\mathrm{out}}(k_1)$$

 $\Theta_{\mathrm{out}}(k_i) = \Theta(\delta \eta_{ij}^2 + \delta \phi_{ij}^2 - R^2)$ (means gluon i is more than R away from the hard jet j).

Jet p_t in sequential recombination algorithms

Iterate until all objects are removed

- ▶ Define $d_{ij} = \min\left(k_{ti}^{\mathbf{p}}, k_{tj}^{\mathbf{p}}\right) \left(\delta \eta_{ij}^2 + \delta \phi_{ij}^2\right)$; $d_{iB} = k_{ti}^{\mathbf{p}} R^2$.
- lacktriangleright Search for smallest of all distances, $d_{\min}.$
- ▶ If $d_{\min} = d_{iB}$, object i is a jet and is removed.
- ▶ If $d_{\min} = d_{ij}$, objects i and j are merged.

p = -2 for anti- k_t algo \Rightarrow clustering starts with hardest. Gluon 1 ends up outside jet with:

$$\Xi_{\mathrm{out}}(k_1) = \Theta_{\mathrm{out}}(k_1)$$

$$\Theta_{\text{out}}(k_i) = \Theta(\delta \eta_{ij}^2 + \delta \phi_{ij}^2 - R^2)$$
 (means gluon i is more than R away from the hard jet j).

Jet p_t in sequential recombination algorithms

Iterate until all objects are removed

- ▶ Define $d_{ij} = \min\left(k_{ti}^{\mathbf{p}}, k_{tj}^{\mathbf{p}}\right) \left(\delta \eta_{ij}^2 + \delta \phi_{ij}^2\right)$; $d_{iB} = k_{ti}^{\mathbf{p}} R^2$.
- lacktriangleright Search for smallest of all distances, d_{\min} .
- ▶ If $d_{\min} = d_{iB}$, object i is a jet and is removed.
- ▶ If $d_{\min} = d_{ij}$, objects i and j are merged.

p = +2 for k_t algo \Rightarrow clustering starts with softest. Gluon 1 ends up outside jet with:

$$\begin{split} \Xi_{\mathrm{out}}(k_1) &= \Theta_{\mathrm{out}}(k_1) \left[1 - \Theta_{\mathrm{out}}(k_2) \Theta_{12}(k_1, k_2) \Theta_{\mathrm{in}}(k) \right] + \\ &+ \Theta_{\mathrm{in}}(k_1) \Theta_{\mathrm{out}}(k_2) \Theta_{12}(k_1, k_2) \Theta(d_{1j} - d_{12}) \Theta_{\mathrm{out}}(k) + \\ &- \Theta_{\mathrm{out}}(k_1) \Theta_{\mathrm{in}}(k_2) \Theta_{12}(k_1, k_2) \Theta(d_{2j} - d_{12}) \Theta_{\mathrm{in}}(k), \end{split}$$

$$\Theta_{12}(k_1, k_2) = \Theta(R^2 - \delta \eta_{12}^2 - \delta \phi_{12}^2), \ \Theta_{\text{in}} = 1 - \Theta_{\text{out}}, \ k = k_1 + k_2$$

Jet p_t in sequential recombination algorithms

Iterate until all objects are removed

- ▶ Define $d_{ij} = \min\left(k_{ti}^{\mathbf{p}}, k_{tj}^{\mathbf{p}}\right) \left(\delta \eta_{ij}^2 + \delta \phi_{ij}^2\right)$; $d_{iB} = k_{ti}^{\mathbf{p}} R^2$.
- lacktriangleright Search for smallest of all distances, d_{\min} .
- ▶ If $d_{\min} = d_{iB}$, object i is a jet and is removed.
- ▶ If $d_{\min} = d_{ij}$, objects i and j are merged.

p=0 for Cambridge/Aachen algo \Rightarrow clustering starts with closest. Gluon 1 ends up outside jet with (preliminary):

$$\begin{split} \Xi_{\mathrm{out}}(k_1) &= \Theta_{\mathrm{out}}(k_1) \left[1 - \Theta_{\mathrm{out}}(k_2) \Theta_{12}(k_1, k_2) \Theta_{\mathrm{in}}(k) \right] + \\ &+ \Theta_{\mathrm{in}}(k_1) \Theta_{\mathrm{out}}(k_2) \Theta_{12}(k_1, k_2) \Theta(d_{1j} - d_{12}) \Theta_{\mathrm{out}}(k) + \\ &- \Theta_{\mathrm{out}}(k_1) \Theta_{\mathrm{in}}(k_2) \Theta_{12}(k_1, k_2) \Theta(d_{2j} - d_{12}) \Theta_{\mathrm{in}}(k), \end{split}$$

$$\Theta_{12}(k_1, k_2) = \Theta(R^2 - \delta \eta_{12}^2 - \delta \phi_{12}^2), \ \Theta_{\text{in}} = 1 - \Theta_{\text{out}}, \ k = k_1 + k_2$$

Jet p_t in cone algorithms

SISCone algorithm

- ➤ Search for all stable cones of radius R (in a seedless way) [stable cone is one which points in same direction as 4-momentum of its contents].
- ▶ Resolve overlaps between jets with a split/merge procedure with overlap parameter f.

Gluon 1 ends up outside the hard jet with (preliminary):

$$\Xi_{\text{out}}(k_{1}) = \Theta_{\text{out}}(k_{1}) + \\ +\Theta_{\text{in}}(k_{1})\Theta_{\text{out}}(k_{2})\Theta_{\text{out}}(k)\Theta(R^{2} - \theta_{1k}^{2})\Theta(R^{2} - \theta_{2k}^{2}) \times \\ \times\Theta(-k_{t1} + f(k_{t1} + k_{t2}))\Theta(\theta_{1j}^{2} - \theta_{12}^{2}) + \\ -\Theta_{\text{in}}(k_{2})\Theta_{\text{out}}(k_{1})\Theta_{\text{out}}(k)\Theta(R^{2} - \theta_{1k}^{2})\Theta(R^{2} - \theta_{2k}^{2}) \times \\ \times\Theta(k_{t2} - f(k_{t1} + k_{t2})).$$

Jet p_t in cone algorithms

SISCone algorithm

- ➤ Search for all stable cones of radius R (in a seedless way) [stable cone is one which points in same direction as 4-momentum of its contents].
- ▶ Resolve overlaps between jets with a split/merge procedure with overlap parameter f.

Gluon 1 ends up outside the hard jet with (preliminary):

$$\Xi_{\text{out}}(k_{1}) = \Theta_{\text{out}}(k_{1}) + \\
+\Theta_{\text{in}}(k_{1})\Theta_{\text{out}}(k_{2})\Theta_{\text{out}}(k)\Theta(R^{2} - \theta_{1k}^{2})\Theta(R^{2} - \theta_{2k}^{2}) \times \\
\times\Theta(-k_{t1} + f(k_{t1} + k_{t2}))\Theta(\theta_{1j}^{2} - \theta_{12}^{2}) + \\
-\Theta_{\text{in}}(k_{2})\Theta_{\text{out}}(k_{1})\Theta_{\text{out}}(k)\Theta(R^{2} - \theta_{1k}^{2})\Theta(R^{2} - \theta_{2k}^{2}) \times \\
\times\Theta(k_{t2} - f(k_{t1} + k_{t2})).$$

Mean-value of change in p_t of a jet is:

$$\langle \delta p_t \rangle = \frac{C_F}{\pi} \int \frac{d^2 k_t}{\pi k_t^2} \frac{d\alpha}{\alpha} \left\{ \alpha_s(0) + 4\pi \chi(k_t^2) \right\} \delta p_t(k) + 4C_F \int \left(\frac{\alpha_s}{4\pi}\right)^2 d\Gamma_2 \frac{M^2}{2!} \delta p_t(k_1, k_2),$$

[lpha: angular variable, χ : 1-loop virtual correction, $d\Gamma_2$: 2-loop phase-space, $k=k_1+k_2$ is parent gluon of mass $m^2=2k_1.k_2.$]

Mean-value of change in p_t of a quark-jet due to hadronisation is:

$$\langle \delta p_t \rangle \approx -\frac{1}{R} \mathcal{M} 0.5 \,\text{GeV},$$

[good approximation up to $R \sim 1$] [for a gluon jet rescale this by $C_A/C_F = 9/4$]

Algorithm	Rescaling factor (\mathcal{M})
anti- k_t	1.49 (a.k.a. Milan factor)

Mean-value of change in p_t of a quark-jet due to hadronisation is:

$$\langle \delta p_t \rangle \approx -\frac{1}{R} \mathcal{M} 0.5 \,\text{GeV},$$

[good approximation up to $R \sim 1$] [for a gluon jet rescale this by $C_A/C_F = 9/4$] where $\mathcal M$ is a rescaling factor:

Algorithm	Rescaling factor (\mathcal{M})
anti- k_t	1.49 (a.k.a. Milan factor)
	1.01

Mean-value of change in p_t of a quark-jet due to hadronisation is:

$$\langle \delta p_t \rangle \approx -\frac{1}{R} \mathcal{M} 0.5 \,\text{GeV},$$

[good approximation up to $R \sim 1$] [for a gluon jet rescale this by $C_A/C_F = 9/4$] where $\mathcal M$ is a rescaling factor:

Algorithm	Rescaling factor (\mathcal{M})
anti- k_t	1.49 (a.k.a. Milan factor)
k_t	1.01
Cambridge/Aachen	1.16 (preliminary)

Mean-value of change in p_t of a quark-jet due to hadronisation is:

$$\langle \delta p_t \rangle \approx -\frac{1}{R} \mathcal{M} 0.5 \,\text{GeV},$$

[good approximation up to $R \sim 1$] [for a gluon jet rescale this by $C_A/C_F = 9/4$] where $\mathcal M$ is a rescaling factor:

Algorithm	Rescaling factor (\mathcal{M})
anti- k_t	1.49 (a.k.a. Milan factor)
k_t	1.01
Cambridge/Aachen	1.16 (preliminary)
	In progress

Mean-value of change in p_t of a quark-jet due to hadronisation is:

$$\langle \delta p_t \rangle \approx -\frac{1}{R} \mathcal{M} 0.5 \,\text{GeV},$$

[good approximation up to $R \sim 1$] [for a gluon jet rescale this by $C_A/C_F = 9/4$] where $\mathcal M$ is a rescaling factor:

Algorithm	Rescaling factor (\mathcal{M})
anti- k_t	1.49 (a.k.a. Milan factor)
k_t	1.01
Cambridge/Aachen	1.16 (preliminary)
SISCone	In progress

Comparison to Monte Carlos

Expect differences due to: rescaling factor, higher orders in R, and higher orders in $lpha_s$

Dasgupta et al, 2007

- ► Analytical estimates of non-perturbative corrections are vital (guide choice of *R*).
- ▶ Hadronisation $\sim 1/R$, Underlying event $\sim R^2$.
- At one-gluon level, effect of hadronisation on p_t of jet is universal.
- ▶ Universality of α_0 is maintained
- ▶ Hadronisation in k_t is 70% that in anti- k_t ; and 90% that in Cambridge/Aachen.
- ▶ We hope to finish the calculation for SISCone algorithm in time for the proceedings.

- ► Analytical estimates of non-perturbative corrections are vital (guide choice of *R*).
- ▶ Hadronisation $\sim 1/R$, Underlying event $\sim R^2$.
- At one-gluon level, effect of hadronisation on p_t of jet is universal.
- This universality is broken at two-loop (significant effect) Result depends on algorithm case-by-case.
- Universality of α₀ is maintained.
- ▶ Hadronisation in k_t is 70% that in anti- k_t ; and 90% that in Cambridge/Aachen.
- ➤ We hope to finish the calculation for SISCone algorithm in time for the proceedings.

- ► Analytical estimates of non-perturbative corrections are vital (guide choice of *R*).
- ▶ Hadronisation $\sim 1/R$, Underlying event $\sim R^2$.
- ▶ At one-gluon level, effect of hadronisation on p_t of jet is universal.
- ► This universality is broken at two-loop (significant effect) Result depends on algorithm case-by-case.
- ▶ Universality of α_0 is maintained
- > Hadronisation in k_{ℓ} is 70% that in anti- k_{ℓ} ; and 90% that in
- Cambridge/ Aachen...
- We hope to finish the calculation for SISCone algorithm in time for the proceedings.

- ► Analytical estimates of non-perturbative corrections are vital (guide choice of *R*).
- ▶ Hadronisation $\sim 1/R$, Underlying event $\sim R^2$.
- ▶ At one-gluon level, effect of hadronisation on p_t of jet is universal.
- ► This universality is broken at two-loop (significant effect). Result depends on algorithm case-by-case.
- Universality of α_0 is maintained
- ▶ Hadronisation in k_t is 70% that in anti- k_t ; and 90% that in Cambridge/Aachen.
 - We hope to finish the calculation for SISCone algorithm in time for the proceedings.

- Analytical estimates of non-perturbative corrections are vital (guide choice of R).
- ▶ Hadronisation $\sim 1/R$, Underlying event $\sim R^2$.
- ▶ At one-gluon level, effect of hadronisation on p_t of jet is universal.
- ► This universality is broken at two-loop (significant effect). Result depends on algorithm case-by-case.
- ▶ Universality of α_0 is maintained.
- ▶ Hadronisation in k_t is 70% that in anti- k_t ; and 90% that in Cambridge/Aachen.
- ▶ We hope to finish the calculation for SISCone algorithm in time for the proceedings.

- ► Analytical estimates of non-perturbative corrections are vital (guide choice of *R*).
- ▶ Hadronisation $\sim 1/R$, Underlying event $\sim R^2$.
- ▶ At one-gluon level, effect of hadronisation on p_t of jet is universal.
- ► This universality is broken at two-loop (significant effect). Result depends on algorithm case-by-case.
- ▶ Universality of α_0 is maintained.
- ▶ Hadronisation in k_t is 70% that in anti- k_t ; and 90% that in Cambridge/Aachen.
- We hope to finish the calculation for SISCone algorithm in time for the proceedings.

- ► Analytical estimates of non-perturbative corrections are vital (guide choice of *R*).
- ▶ Hadronisation $\sim 1/R$, Underlying event $\sim R^2$.
- ▶ At one-gluon level, effect of hadronisation on p_t of jet is universal.
- ► This universality is broken at two-loop (significant effect). Result depends on algorithm case-by-case.
- ▶ Universality of α_0 is maintained.
- ▶ Hadronisation in k_t is 70% that in anti- k_t ; and 90% that in Cambridge/Aachen.
- ► We hope to finish the calculation for SISCone algorithm in time for the proceedings.

