The SHMS and the Hall C L/T Separated (SI)DIS Program

Thia Keppel Hampton University / Jefferson Lab

> Deep Inelastic Scattering 2009 April 2009

Hall-C 12 GeV Experiments

	Title	Spokespersons
12-06-101	Measurement of the Charged Pion Form Factor to High Q^2	G. Huber, D. Gaskell
12-06-104	Measurement of the Ratio R = sigma_L/sigma_T in Semi-Inclusive DIS	R. Ent, P. Bosted, H. Mkrtchyan
12-06-105	Inclusive Scattering from Nuclei at x > 1 in the quasi-elastic and deep-inelastic regimes	D. Day, J. Arrington
12-06-121	A Path to "Color Polarizabilities" in the Neutron: A Precision Measurement of the Neutron g_2 and d_2 at High Q^2 in Hall C	B. Sawatzky, T. Averett, W. Korsch, Z.E. Meziani
12-07-105	Scaling Study of the L-T Separated Pion Electroproduction Cross- Section at 11 GeV	T. Horn, G. Huber
12-06-107	The Search for Color Transparency at 12 GeV	D. Dutta, R. Ent
12-06-110	Measurement of the Neutron Spin Asymmetry A1n in the Valence Quark Region Using an 11 GeV Beam in Hall C	X. Zheng, J.P. Chen, G. Cates, Z.E. Meziani
12-07-101	Hadronization in Nuclei by Deep Inelastic Electron Scattering	B.E. Norum, J.P. Chen, H. Lu, K. Wang
12-07-102	Precision Measurement of the Parity-Violating Asymmetry in DIS off Deuterium Using baseline 12-GeV Equipment in Hall C	P. Reimer, X. Zheng, K. Paschke
12-09-011	Studies of the L-T Separated Kaon Electroproduction Cross Section from 5-11 GeV	T. Horn, P. Markowitz
12-09-017	Transverse Momentum Dependence of Semi-Inclusive Pion Production	P. Bosted, R. Ent, H. Mkrtchyan
12-07-106	The A-Dependence of J/Psi Photoproduction near Threshold	E. Chudakov, P. Bosted, J. Dunne
12-09-006	The Neutron Electric Form Factor at Q2 up to 7 (GeV/c)2 from the Reaction 2H (→e, e′→n)1H via Recoil Polarimetry	B Anderson, J. Arrington, S. Kowalski, R. Madey, B. Plaster, A. Semenov
12-09-001	GEp/GMp with an 11 GeV electron beam	E. Brash, C. Perdrisat
12-09-002	Precise Measurement of π – $/\pi$ + Ratios in Sem-Inclusive Deep Inelastic Scattering Part I: Charge Symmetry Violating Quark Distribution	K. Hafidi, D. Dutta

15 total

Deep Exclusive Factorization

- The kinematic regime where hard-soft factorization applies allows access to physics contained in GPDs,....
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached
- One of the most stringent tests of factorization is the Q² dependence of the π electroproduction cross section
 - σ_L scales to leading order as Q⁻⁶
 - $-\sigma_T$ scales as Q-8
 - As Q² becomes large: $\sigma_L >> \sigma_T$
 - In nuclei, onset of color transparency
- Factorization theorems for meson electroproduction have been proven rigorously only for longitudinal photons [Collins, Frankfurt, Strikman, 1997]
 - Dominance of σ_L is important as it contains the GPD to be extracted

Q^2 dependence of σ_L and σ_T

• σ_L is consistent with the Q-6 QCD, BUT $\sigma_L >> \sigma_T$ and $\sigma_T \sim Q^{-8}$ are not fulfilled

T. Horn et al., Phys. Rev. C78, 058201 (2008) G. Huber, H. Blok, T. Horn et al., Phys. Rev. C78, 045203 (2008)

Q^2 dependence of σ_L and σ_T

 σ_L

• σ_L is consistent with the Q-6 QCD, BUT $\sigma_L >> \sigma_T$ and $\sigma_T \sim$ Q-8 are not fulfilled

 The onset of factorization may require an extension of the kinematic reach:

T. Horn et al., Phys. Rev. C78, 058201 (2008) G. Huber, H. Blok, T. Horn et al., Phys. Rev. C78, 045203 (2008)

Choice of Kinematics

HMS + SHMS Accessible Phase Space for Deep Exclusive Scattering

For semi-inclusive, less Q² phase space at fixed x due to: i) $M_X^2 > 2.5 \ GeV^2$; and ii) need to measure at both sides of Θ_{γ}

SIDIS - Factorization and Flavor Decomposition

DIS probes the sum of quarks and anti-quarks $\sum e_q^2(q+ar{q})$

SIDIS: Detect a final state hadron in addition to scattered electron

→ Can 'tag' the flavor of the struck quark by measuring the hadrons produced: 'flavor tagging'

$$\frac{1}{\sigma_{(e,e')}} \frac{d\sigma}{dz} (ep \to hX) = \frac{\sum_{q} e_q^2 f_q(x) D_q^h(z)}{\sum_{q} e_q^2(x) f_q(x)}$$

time as (e,e'h)

(e,e') at same

Measure inclusive

 $f_q(x)$: parton distribution function

 $D_a^h(z)$: fragmentation function

- Leading-Order (LO) QCD
- after integration over \textbf{p}_{\top} and $\boldsymbol{\varphi}$
- NLO: gluon radiation mixes x and z dependences

SIDIS - k_T Dependence

- Not much is known about the orbital motion of partons
- Significant net orbital angular momentum of valence quarks implies significant transverse momentum of quarks

Final transverse momentum of the detected pion P_{+} arises from convolution of the struck quark transverse momentum k_{+} with the transverse momentum generated during the fragmentation p_{+} .

$$P_{+} = p_{+} + z k_{+} + O(k_{+}^{2}/Q^{2})$$

E12-09-017: Map the p_T dependence ($p_T \sim \Lambda < 0.5~GeV$) of π^+ and π^- production off proton and deuteron targets to study the k_T dependence of up and down quarks

12-09-017 Projected Results - Pions

12-09-017 Projected Results - Kaons

R = σ_L/σ_T in DIS and in (e,e' π) SIDIS

R_{DIS} is in the naive parton model is related to the parton's

transverse momentum: $R = 4(M^2x^2 + \langle k_T^2 \rangle)/(Q^2 + 2\langle k_T^2 \rangle)$.

- $R_{DIS} \rightarrow 0$ at $Q^2 \rightarrow \infty$ is a consequence of scattering from free spin- $\frac{1}{2}$ constituents
- At finite Q^2 , R_{DIS} sensitive to gluon and higher-twist effects
- No distinction made up to now between diffractive and non-diffractive contributions in $R_{\rm DTS}$

R = σ_L/σ_T in DIS and in (e,e' π) SIDIS

- If integrated over z (and p_T , ϕ , hadrons), $R_{SIDIS} = R_{DIS}$
- R_{SIDIS} may vary with z
- At large z, there are known contributions from (semi-) exclusive channels: pions originating from $\rho \to \pi^+\pi^-$
- R_{SIDIS} may vary with p_T
- Is $R_{SIDIS}^{\pi^+} = R_{SIDIS}^{\pi^-}$? Is $R_{SIDIS}^{H} = R_{SIDIS}^{D}$?
- R_{SIDIS} = R_{DIS} test of dominance of quark fragmentation

R = σ_L/σ_T for Pion Electroproduction

 $P_{T^{^{2}}} \\$

R_{SIDIS} essentially unknown! "Deep exclusive scattering" is the $z \rightarrow 1$ limit of this "semi-inclusive DIS" process

Here, R =
$$\sigma_L/\sigma_T \sim Q^2$$

 $R_{SIDIS} \rightarrow R_{DIS}$ disappears with Q^{2} !

Not clear what R will behave like at large p_T

Inclusive Structure Functions @ 12 GeV

Rosenbluth Separations up to $Q^2 \sim 12 \rightarrow R = \sigma_L/\sigma_T$

Nuclear Medium Modifications of Nucleon Structure

- F₂ / nucleon changes as a function of A
- No single explanation explains totality of phenomena

Nuclear Medium Effects at large x (> 1)

- A nuclear medium has an average density, ρ_0 , of 0.17 GeV/fm³.
- A typical distance for 2 nucleons participating in a short-range correlation (SRC) is ~1.0 fm → the local density can increase by a factor of ~4: this is comparable to the density of neutron stars.
- Nucleons participating in a SRC are deeply bound, i.e. their structure should be modified, like their shape or quark distributions.
- x = Q²/2Mv > 1 → can be used to select quarks inside nucleon participating in a SRC, "superfast quarks!"

Extend Measurements on Nuclei to x > 1: Superfast Quarks

Scatter from nuclei in region well described by electron-quark scattering, with superfast quarks

x = momentum fraction (of nucleon) of quark

Note: x = 3, $Q^2 = 5 \rightarrow$ nucleon with 1.78+ GeV/c! (similar for x = 1.5, $Q^2 = 10$)

Physics of Nuclei: Color Transparency

Total pion-nucleus cross section slowly disappears, or ... pion escape probability increases \rightarrow Color Transparency?

Physics of Nuclei: Color Transparency

Total pion-nucleus cross section slowly disappears, or ... pion escape probability increases \rightarrow Color Transparency? \rightarrow Unique possibility to map out at 12 GeV (up to $Q^2 = 10$)

Motivation for Hall C Upgrade

- Deep inelastic scattering at high Bjorken x
- Semi-inclusive scattering at high hadron momenta
- Polarized and unpolarized scattering on nuclei
- Pion and nucleon form factors at high Q²

- Highest Luminosity (L=10³⁸ nucleons/cm²/s)
- Pair of magnetic spectrometers (SHMS + existing HMS)
- Detection of charged particles with highest momenta
- Accuracy and reproducibility
- Small angle capability
- Very good particle identification
- Compatibility with all target configurations
- Frequent momentum, angle changes

Hall C at JLab today - with HMS (7.3 GeV)

Copy main properties of HMS into SHMS design:

- Pivot and Rail System
- Point-Point Optics Design
- "Flat" Acceptances
- Shield House
- Redundancy in Detectors

Hall C at 12 GeV: add "Super" HMS (SHMS, 11 GeV)

SHMS Detector System

- Noble Gas Cerenkov: e/π (or π/K) separation at high momenta
- Drift Chambers: charged particle tracking; momentum & angle measurement
- Trigger Hodoscopes: basic trigger; Time-of-Flight at low momenta; efficiency
 - 3 Planes Scintillator Paddles
 - 1 Plane Quartz Bars insensitive to photon or low-energy background
- Heavy Gas Cerenkov: π/K separation for momenta > 3.4 GeV
- Calorimeter: e/π separation

HMS

SHMS Design Parameters

Parameter	SHMS Design
Range of Central Momentum	2 to 11 GeV/c for all angles
Momentum Acceptance δ	-10% to +22%
Momentum Resolution	0.03-0.08% (SRD: "<0.2%")
Scattering Angle Range	5.5 to 40 degrees
Solid Angle Acceptance	>4.5 msr for all angles (SRD: ">4.0 msr")
Horizontal Angle Resolution	0.5 - 1.2 mrad
Vertical Angle Resolution	0.3 - 1.1 mrad
Vertex Length Resolution	0.1 - 0.3 cm
Tracking Rate Capability	5 MHz
Beam Capability	Up to 90 μA, 11 GeV beam
Protection from	Magnetic, Cryogenic, and Fall Hazards
Angle Changes	Rapid, Remote, Reproducible

<u>Conclusion:</u> Hall C at 12 GeV will be well suited to exciting program of high precision inclusive, semi-inclusive cross section measurements

Thanks to Rolf Ent, Howard Fenker, John Arrington, Tanja Horn, Dave Gaskell, Zein-Eddine Meziani, Mark Jones, everyone I am forgetting....

extra slides

E00-108: Leading-Order x-z factorization

Closed (open) symbols reflect data after (before) events from coherent ρ production are subtracted

HMS Kinematic Stability

Phase Transition at High Densities

- Average nuclear densities are well below phase transition
- Short range correlations provide a small high-density component in nuclei

Low temperature high density

- •Try to isolate SRCs to probe high density matter
- May be origin of EMC effect, medium modifications
- Cold, dense matter relevant to astrophysics