Search for new neutral gauge bosons and leptoquarks at the Tevatron

Alexei Safonov (Texas A&M University) For CDF and D0 Collaborations

Outline

New gauge boson searches:

- Motivation
- Status Of bread & butter dilepton searches
- More elaborate signatures with di-jets, dibosons and top
- Leptoquark searches
 - Motivation
 - Latest results

Summary

Tevatron Status

- Pp-bar collisionsE(cm)=1.96 TeV
- Steady data taking
- About 5.5 fb⁻¹ "on tape"

Why New Bosons?

- Many new physics models designed to resolve difficulties of Standard Model predict new bosons:
 - Randal-Sundrum and TeV⁻¹ Models (KK gravitons or new gauge bosons)
 - Large Flat Extra Dimensions (gravitons)
 - Good old Z-prime bosons:
 - Sequential Standard Model
 - same couplings as in SM Z⁰: Z_{SSM}
 - □ GUTs : E6 \rightarrow SO(10)×U(1)_{\nu} \rightarrow SU(5)×U(1)_{\nu}×U(1)_{\nu}
 - $Z_{\psi}, Z_{\eta}, Z_{\chi}$
 - Left-Right and Alternative Left-Right Models
 - assume $g_R = g_L$: Z_{LRM} , Z_{ALRM}

RS and TeV⁻¹ Models

- Randall-Sundrum Model a vigorous solution of hierarchy problem:
 - Small extra spatial dimensions
 - Curved bulk space: curvature k
 - Graviton propagates in the Bulk
 - All other particles live on SM "TeV" brane
 - Coupling constant depends on k/M_{PL}
 - Controls width of KK graviton resonances
- TeV⁻¹ Extra dimension Models
 - Very similar to RS, but additional particles in the bulk (gauge bosons)
 Many KK towers
 - Running of the couplings changed
 Lowers GUT scale
 - Nearly equal energy level spacing of KK states
 - Natural to EW scale ED size ~1/TeV
 - But gravity is left out

Large Extra Dimensions

- Large flat Extra-Dimensions (ADD model)
 - Could be as large as a few μm (n = 1) or as small as a fm (n = 6)
 - Bulk only accessible by gravity
 - SM particles restricted to 3D brane
 - Gauss' Law: $M_{PL}^2 = M_S^{2+n} R^n$
 - $M_S \sim O(1)$ TeV → Hierarchy problem translated from UV to IR
 - Winding modes with energy spacing 1 meV – 100 MeV
 - Can't resolve experimentally, look for enhancement in the spectrum
- Virtual Graviton Exchange → modifies (e.g. dilepton) mass continuum
- Direct production also possible: look for mono-jet or mono-photon signature (not in this talk)

Z-prime in $ee/\mu\mu$

Traditional bread & butter dilepton searches

- □ CDF updates with L=2.3 2.5 fb⁻¹
 - Two searches: di-electron and di-muons
- Use Z peak as a control region, look for excess at the higher mass

Limits on Z' and RS Graviton

Alexei Safonov, DIS-2009, Madrid, Spain

- With no excess, we set limits:
 - Z'→ee: M>0.8-1 TeV
 - RS G→ee:
 - □ ~900 GeV for k/M=0.1
 - □ ~750 GeV for k/M=0.05

Graviton k/M _{Pl}	Mass Limit, 95% CL (GeV/c ²)	
0.1	921	
0.07	824	
0.05	746	
0.035	651	
0.025	493	
0.015	409	
0.01	293	
Di-muon channel results		

4/29/2009

PRL 102, 031801 (2009)

CDF Run II Preliminary L=2.3 fb⁻¹

Search with Dijets

L = 1.1 fb^{-1}

- Search for generic bumps in dijet spectrum
 - Worse resolution and larger backgrounds but much larger rate!

RS Graviton in ZZ Channel

□ L=2.5-2.9 fb⁻¹

Put in many improvements:

- Special forward tracking, loose lepton categories
- Multiple channels to improve acceptance:

eell, μμll, ll+jj

4/29/2009

Alexei Safonov, DIS-2009, Madrid, Spain

Search in WW Channel

\Box L = 2.9 fb⁻¹

- Optimize to increase sensitivity in high mass region
 - Separate for Z' or RS Graviton

Limits from WW Search

- Sequential Z-prime
 - Mass of 260-550 GeV excluded
- RS Graviton:
 - Anything below ~600 GeV excluded for k/M=0.1
- Stronger limits if for some reason fermion coupling is suppressed (e.g. lepto/fermio-phobic Z')

Search for new bosons in tt-bar

- Several new results from CDF and D0:
 - Details in talk by E. Agulio on top
- Not competitive with dileptons in standard benchmarks, but new physics can pop up here if leptonic decays are suppressed
 - Signal: one (Z' or heavy gluon) or multiple (RS) bumps in the spectrum
- Advanced analyses:
 - JES systematics from in-situ W constraint
 - Unfolding of the m_{tt} spectrum

Leptoquarks

- Provides "missing" link between leptons and quarks in SM
- Scalar (standard benchmark) and vector (larger x-section, harder spectrum) variety
- FCNC severely limits coupling across generations
- Additional interest inspired by a few HERA events
- Jargon in benchmarking:
 - 3^{rd} generation as example: LQ can decay to τb or tv
 - Define parameter β as BR to neutrinoless decays

LQs in Jets+MET Channel

- New D0 analysis L=2.5 fb⁻¹
- Designed to be sensitive to small β for all generations
 - Exactly 2 acoplanar jets
 - Separately optimize for high and low masses

Search for 1st gen LQ in ee+jets+MET

- D0 analysis with L=1 fb⁻¹
- Limits on scalar and vector LQ
 - Minimal: k=1, lambda=0
 - YM: k=0, lambda=0
 - MM: k=-1, lambda=-1

LQ type	Mass limit
Scalar	292
Vect. Minimal	350
Vect. YM	410
Vect. MM	458

Search for 2nd Gen LQs

- D0 analysis with L=1 fb⁻¹
- Designed to target both high and medium β ranges
 - Both μμjj & μ+METjj
 - NN-based analysis
- Very low beta from acoplanar jets+MET analysis

Search for 3rd gen LQs

- □ L=1 fb⁻¹
- Signature: μτ_{had}+jj
- Two subsets:
 - Two b-tagged jets
 - One b-tag (sec. vertex)
 - More backgrounds, but allows recovering extra acceptance

Summary

- Both CDF and D0 are in excellent shape and maintain vibrant and active programs on searches for new physics
- New data are regularly used to update analyses
- More elaborate techniques lead to better sensitivity with the same amounts of data
- Large top and diboson samples and detailed understanding allow broadening searches beyond standard dilepton scenarios

Massive Gluon

- Similar search, based on L=1.9 fb^{-1}
- Strong coupling, possibly enhanced by $\lambda = \lambda_0 * \lambda_a$
- Look for a bump in the spectrum
- With no excess, set limits

G

 $\lambda_0 \mathbf{g}_s$

 $\lambda_{a}\mathbf{g}_{s}$ mmm

q

gs

Q

g_s mmm

a

Dijet final states

- Can look at resonances in Mjj but also at angular distributions:
- Deviation from SM could be hint of:
 - Compositeness
 - ADD extra dimensions
 - TeV-1extra dimensions
- Measure χ_{dijet} as a function of Mjj

Compositness (A): ~2.6 TeV ADD LED (M_s in GRW formalism): 1.54 TeV TeV-1 ED (M_c): 1.42 TeV

4/2010 D'Onofrio, IFAE