MINERνA: νN Scattering

Benjamin P. Ziemer
Univ. California Irvine
on behalf of the Minerva Collaboration
MINERvA

DIS09 Madrid
Ziemer - UCI
MINERvA Collaboration

MINERvA Institutions

Tufts
William & Mary
FNAL
Duluth
Texas
Athens

NOVA

Northwestern
MCLA (Mass.)
UNI (Peru)
PUCP (Peru)
CBPF (Brazil)
Guanajuato (Mex)

MINERVA

Dortmund
INR, Moscow

Theory

Jefferson Lab

Hampton
James Madison
Rutgers

Irvine

Rochester

Nuclear

T2K

MINOS

DIS09 Madrid
Ziener - UCI
MINERνA Physics Goals
(non-exclusive list)

Minerva will make precise measurements of neutrino cross-sections in a wide range of energies relevant to many oscillation experiments.

These measurements will be exclusive and inclusive channels: νn→μp, νN→νN’, νN→μX, etc.

The A dependence of the cross section will be extracted with Minerva’s nuclear targets. A detailed study of nuclear effects will be done with data taken from these targets.

(oscillation friendly plot)
Intense neutrino beam with broad energy range

MINERvA will use mixture of LE, ME, HE beam

Anti-neutrino running possible by changing horn currents
MINERvA Event Rates

Assuming 4.0×10^{20} in LE and 12.0×10^{20} ME NuMI beam configurations in current run plan

Fiducial Volume = 3 tons CH, 0.2t He, 0.15t C, 0.7t Fe and 0.85t Pb

Expected CC event samples:
- 9.0 M ν events in 3 tons of CH
- 0.6 M ν events in He
- 0.4 M ν events in C
- 2.0 M ν events in Fe
- 2.5 M ν events in Pb

Main CC Physics Topics (Statistics in CH) - 9 Million total CC events

- Quasi-elastic 0.8 M events
- Resonance Production 1.7 M total
- Transition: Resonance to DIS 2.1 M events
- DIS, Structure Funcs. and high-x PDFs 4.3 M DIS events
- Coherent Pion Production 89 K CC / 44 K NC
- Strange and Charm Particle Production > 240 K fully reconstructed events
- Generalized Parton Distributions order 10 K events
- Nuclear Effects He: 0.6 M, C: 0.4 M, Fe: 2.0 M and Pb: 2.5 M

DIS09 Madrid
Ziemer - UCI
MINERvA Detector
Basic element of MINERvA is ~2m across hexagonal scintillator plane in a steel frame - three different orientations to aid reconstruction

Nuclear Targets (see next slide)

Fully active scintillator tracker region

Side and down-stream calorimeters

MINOS Near Detector will measure the momentum of exiting muons
MINERνA Nuclear Targets

Red = Fe, Grey = Pb, Black = C

- 2.5 cm thick, 230 kg Fe/Pb
- 2.5 cm thick, 230 kg Fe/Pb
- 7.5 cm C, 140 kg
- 0.75 cm Pb, 170 kg
- 1.5 cm thick, 115 kg Fe/Pb

Comparison of He/Pb/C/Fe with same detector geometry

Thin Pb target also serves to insure good photon detection efficiency

Thin targets for low energy particle emission studies

DIS09 Madrid
Ziemer - UCI
The Tracking Prototype served as a test of Minerva’s subsystems. It was constructed above ground and took CR data. **Mid-April** it was moved underground and is taking neutrino events as we speak.
MINERνA Reconstruction

Reconstruction must be able to handle many event topologies:
 • short tracks, high multiplicities, accurately measure EM/hadronic showers

Detector performance and resolutions impact physics extracted:
 • 3mm coordinate, 4-6mm vertex, <1° angular resolutions
 • $\Delta E_{EM}/E_{EM} = 1% + 2.7%/\sqrt{E}$ (5%/\sqrt{E}), $\Delta e_h/E_{h} = 4% + 18%/\sqrt{E}$ (23%/\sqrt{E})
 • $\Delta P_\mu/P_\mu = 5%$ (stopping), ~12-13% (MINOS)
 • 85%, 90%, 95% of stopping K, π, and p correctly identified via dE/dx
 • Around $\Delta(1232)$, $W_{res} \sim 0.1\text{GeV}$ and $Q^2_{res} \sim 0.2\text{ (GeV/c)}^2$

Initial tracking has approx. 99% efficiency and track based alignment using CR sample is underway.
MINERvA and DIS
MINERvA ‘DIS’ Coverage

• Minerva will collect 6M events in carbon in the transition (not-so-deep DIS) and DIS region plus an additional 6.5M events in the four nuclear targets.

• Different specific studies will focus on various regions of variable space, but Minerva will increase the existing neutrino data set available to the community.

DIS defined as: $W > 2\text{GeV}, Q^2 > 1(\text{GeV}/c)^2$

variable distribution for expected CC yield

DIS09 Madrid
Ziemer - UCI
Averages of the resonance form factors appear to be ‘dual’ to the leading twist structure functions. The quotient of the ξ integral of these two quantities yields to what degree duality holds.

Theoretically, neutrino duality seems to hold better than charged leptons, but depends on the axial form factor model.

$$\xi = \frac{2x}{[1 + 4M^2x^2/Q^2]^{1/2}}$$

DIS09 Madrid

Ziemer - UCI

Neutrino Nuclear Effects
(modified interaction probabilities)

These effects are relatively well understood for electrons and muons, but a detailed study has not been done for neutrinos. Presence of the axial vector current and flavor specificity obscure neutrino nuclear effects. Minerva will take data across a wide range of targets with the same beam. Precision tracking will allow extraction of nuclear correction factors and new models to be tested.

DIS09 Madrid
Ziener - UCI

Morfin, et.al, hep-ph/0710.4897
Neutrino Nuclear Effects
(final state interactions)

• Particles that are produced in heavy nuclei have a probability of being altered upon exiting. This is especially true in the range of energies used in current oscillation experiments.

• Pions produced with NuMI neutrinos are most likely to undergo final state interactions. These can be:
 - elastic or inelastic scattering
 - full absorption
 - charge exchange

Any of these effects alters the signal that is extracted.
 - change angular distributions
 - change measured multiplicities
 - alter energy measured

• MINERνA will measure FSI by measuring track multiplicities and hadron shower energies as a function of the struck target.
Conclusions

• MINERvA Tracking Prototype is collecting data right now and will run until the shutdown. The full MINERvA detector is scheduled for completion in April 2010.

• We will reduce the error on many neutrino measurements with a combination of a large data set, fine-grained detector and much hard work. These measurements will then aid the broader physics community.

DIS Conclusions

MINERvA will measure:

• cross sections in the transition region to test quark-hadron duality
• structure function ratios for combinations of nuclear targets
• FSI via nuclear target multiplicities and hadron shower energies

Thank you again.

DIS09 Madrid
Ziemer - UCI
Backup Slides
Neutrino Open Questions

Is the neutrino mass hierarchy ‘normal’ or ‘inverted’?

Is there a $\nu_\mu \rightarrow \nu_e$ conversion?

Does CP Violation exist in the neutrino sector? Can we ever measure it?

One of the biggest systematic uncertainties comes from neutrino cross-sections – most existing knowledge is from early bubble chamber data.

Inverted Normal

ν_2 ν_3

ν_1 ν_2

ν_3 ν_1

Inverted Normal

ν_2 ν_3

ν_1 ν_2

ν_3 ν_1

Inverted Normal

ν_2 ν_3

ν_1 ν_2

ν_3 ν_1

Inverted Normal

ν_2 ν_3

ν_1 ν_2

ν_3 ν_1
The quasi-elastic channel is used in many oscillation experiments. Currently, the cross section is known to about 10-15%*. Minerva will collect roughly 1M CCQE events in a 4yr run. Precision extraction of this cross section will aid many current and future neutrino experiments.

*G.Zeller NuINT07
CC/NC pion production is another important channel. This channel is a background to oscillation experiments.

Current uncertainty in the various CC/NC pion channels is around 10-50%*. Minerva will collect 1.7M CC pion events and a coherent sample of 80K/40K CC/NC. This data will be able to address the current CC coherent pion results and their discrepancy with current models.
Detector Technology

Detector Components
MINERvA Scintillator Planes

The basic element of Minerva is the scintillating plane. Different regions of the detector have absorbers or targets flanking these planes.

Successive planes are rotated by ±60° to aid in 3D reconstruction.
MINERνA Motivation

APS Multi-Divisional Study of the Physics of Neutrinos (2003)
“... determination of the neutrino reaction and production cross sections required for a precise understanding of neutrino-oscillation physics and the neutrino astronomy of astrophysical and cosmological sources. Our broad and exacting program of neutrino physics is built upon precise knowledge of how neutrinos interact with matter.”

“The panel recommends world-class neutrino program as a core component of the US program...”
Sample NuTeV Data vs Theory

Use ACOT - heavy quark mass Effects - in NLO QCD.

$Q > 2.0 \text{ GeV, } W > 3.5 \text{ GeV}$

Use same reference fit as in first publication

Double-differential cross sections

Morfin, et.al hep-ph/0710.4897