Extraction of $F_2^c(x,Q^2)$ from D* cross sections at H1

- Introduction
- D* cross sections
- Fragmentation & Extrapolation
- Extraction of $F_2^c(x,Q^2)$
- Conclusions

Andreas W. Jung for the H1 collaboration
anjung@kip.uni-heidelberg.de
Kirchhoff Institute for Physics
University of Heidelberg

April 26th - 30th, 2009

XVII. International Workshop on Deep-Inelastic Scattering and Related Subjects
D* production: Boson gluon fusion

Dominant process: BGF process

\[e(k) \rightarrow e(k') \]

- **Matrix element**
 - Calculable in different heavy flavor schemes

- **Fragmentation function**
 - From data

Proton p.d.f.

\[f^B_{i,j,k}(x_2, \mu_f) \]

\[d\tilde{\sigma}_{i,j \rightarrow kX}(\mu_f) \]

\[D^H_k(z, \mu_f) \]

Factorisation ansatz:

\[d\sigma = \sum \left[f^B_{i,j,k}(x_2, \mu_f) \otimes d\tilde{\sigma}_{i,j \rightarrow kX}(\mu_f) \otimes D^H_k(z, \mu_f) \right] \]

- **Kinematic at \(\sqrt{s} \approx 320 \text{ GeV} \):**
 - Photon virtuality: \(Q^2 \)
 - Inelasticity: \(y \)
 - Bjørken \(x \)

- **D* via Fragmentation:**
 - Pseudo-rapidity: \(\eta \)
 - Transverse momentum: \(p_T \)
 - (In)elasticity: \(z \)

Extraction of \(F_2^c \) from measurement of D* cross sections

A.W. Jung
Theoretical models

Study production mechanism:

Perturbative QCD:
- Q^2, m_c^2 or p_T^2 provide a hard scale → multiscale problem
- Test of heavy flavor treatment in pQCD

Non-perturbative QCD:
- Parton densities: gluon structure of the proton → test universality
- Fragmentation

Models discussed in the following:

<table>
<thead>
<tr>
<th>CASCADE vs. HVQDIS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO(α_s) + PS ↔ NLO(α_s^2)</td>
</tr>
<tr>
<td>CCFM ↔ DGLAP</td>
</tr>
<tr>
<td>only gluons ↔ all partons</td>
</tr>
<tr>
<td>Lund frag. ↔ Independent frag.</td>
</tr>
<tr>
<td>massive BGF ↔ massive BGF (FFNS)</td>
</tr>
</tbody>
</table>

Note: RAPGAP + HERACLES used correction of data

28th April, 2009 Extraction of F_2^c from measurement of D^* cross sections A.W. Jung
Event selection

Forward directions $\eta > 0$

Backward directions $\eta < 0$

- Scattered electron in backward calorimeter:
 \[Q^2: 5 - 100 \text{ GeV}^2 \]
 → Summary given here

- OR in main calorimeter:
 \[Q^2: 100 - 1000 \text{ GeV}^2 \]
 → Talk by M. Brinkmann

Visible range for the D^* cross section:
\[Q^2 : 5 - 100(0) \text{ GeV}^2 \]
\[\gamma : 0.02 - 0.70 \]
\[p_T(D^*) : > 1.5 \text{ GeV} \]
\[|\eta(D^*)| : < 1.5 \]

D^* reconstructed in golden decay channel:
(with a total BR of 2.57%)

\[D^{*\pm} \rightarrow D^0 \pi^\pm_{\text{slow}} \rightarrow (K^+\pi^\pm)\pi^\pm_{\text{slow}} \]
Event selection

Forward directions: \(\eta > 0 \)

Backward directions: \(\eta < 0 \)

- Scattered electron in backward calorimeter:
 \[Q^2: 5 - 100 \text{ GeV}^2 \]

- Summary given here

- OR in main calorimeter:
 \[Q^2: 100 - 1000 \text{ GeV}^2 \]

- Talk by M. Brinkmann

Visible range for the D* cross section:
- \(Q^2: 5 - 100(0) \text{ GeV}^2 \)
- \(\gamma: 0.02 - 0.70 \)
- \(p_T(D^*) > 1.5 \text{ GeV} \)
- \(|\eta(D^*)| < 1.5 \)

D* reconstructed in golden decay channel:
- \(D^{*\pm} \rightarrow D^0 \pi_{\text{slow}}^{\pm} \rightarrow (K^\mp \pi^\pm) \pi_{\text{slow}}^\pm \)

- **Luminosity:** \(\sim 350 \text{pb}^{-1} \)

- **Extraction of \(F_2^c \) from measurement of D* cross sections**

28th April, 2009

A.W. Jung
D* cross sections in y-Q²

Considered in cross section:
- Data corrected with RAPGAP → \(\epsilon \sim 60\% \)
- Contribution due to b-quarks not subtracted → but < 2\%
- Correction due to other D⁰ decay channels → 4\%
- Correction for NLO-QED effects using HERACLES → 2\%

More information:
https://www-h1.desy.de/psfiles/confpap/ICHEP08/H1prelim-08-072.ps
and http://www-h1.desy.de/psfiles/theses/h1th-504.pdf

- CASCADE describes the data reasonable
- difficulties to describe the new (lowest) y-bin (→ highest x)

28th April, 2009
Extraction of \(F_2^c \) from measurement of D* cross sections
A.W. Jung
Error estimation of the NLO-calculation with parameter variation:

- charm mass: $1.3 < m_c < 1.6$ GeV
- renormalization & factorization scale: $0.5 < \mu_{f,r}/\mu_0 < 2$, with $\mu_0^2 = Q^2 + 4m_c^2$
- fragmentation: comes later

More information:
https://www-h1.desy.de/psfiles/confpap/ICHEP08/H1prelim-08-072.ps
and http://www-h1.desy.de/psfiles/theses/h1th-504.pdf

- Equally good described by HVQDIS (NLO, DGLAP) and CASCADE (LO+PS, CCFM)
- Both have difficulties to describe the new (lowest) y-bin (\rightarrow highest x)
- Data don't prefer a specific model - use both for the extraction of $F_2^c(x,Q^2)$
Extraction of $F_2^c(x,Q^2)$

$$\frac{d^2\sigma^{cc}(x,Q^2)}{dx dQ^2} = \frac{2\pi\alpha^2_{em}}{xQ^4} \cdot \left[1 + (1 - y)^2 \right] \cdot F_2^{cc}(x,Q^2) - y^2 \cdot F_L^{cc}(x,Q^2)$$

What is done to measure $F_2^c(x,Q^2)$:

- Double differential cross section measurement in visible phase space
 - Double differential prediction of cross section in visible phase space (DGLAP & CCFM)
 - Prediction of $F_2^c(x,Q^2)$ in full phase space (η, p_T) (DGLAP & CCFM)

Only at high y: This measurement $O(2-3\%) \rightarrow$ negligible
Extraction of $F_2^c(x,Q^2)$

$$\frac{d^2\sigma^{c\bar{c}}(x,Q^2)}{dxdQ^2} = \frac{2\pi\alpha_s^2}{xQ^4} \cdot \left[1 + (1 - y)^2\right] \cdot F_2^{c\bar{c}}(x,Q^2) - y^2 \cdot F_L^{c\bar{c}}(x,Q^2)$$

What is done to measure $F_2^c(x,Q^2)$:

1. Double differential cross section measurement in visible phase space
2. Double differential prediction of cross section in visible phase space (DGLAP & CCFM)
3. Prediction of $F_2^c(x,Q^2)$ in full phase space (η,p_T) (DGLAP & CCFM)
4. Extrapolation into not measured region → Fragmentation has an influence

- Extrapolation into not measured region → Fragmentation has an influence

Determine Fragmentation Function (FF) from data !
Jet method:

- momentum of c-quark approximated by momentum of rec. D^*-jet

 \[Z_{\text{jet}} = \frac{(E+p_L)_{D^*}}{(E+p)_{\text{jet}}} \]

- k_{\perp}-clus jet algorithm applied in γp-frame ($E_t(D^* \text{jet}) > 3 \text{ GeV}$)

Hemisphere method:

- momentum of c-quark approximated by momentum of rec. D^*-hemisphere

 \[Z_{\text{hem}} = \frac{(E+p_L)_{D^*}}{\sum_{\text{hem}}(E+p)_i} \]

- $\eta(\text{part}) > 0$ for p-remnant suppression

- thrust axis in plane perpendicular to γ used for hemisphere division

Analyses based on:
- D^* reconstructed in golden decay
- HERA I data with $L = 47 \text{ pb}^{-1}$
Fragmentation functions (FF)

Jet method:
- momentum of c-quark approximated by momentum of rec. D^*-jet
 \[Z_{\text{jet}} = \frac{(E+p_L)_{D^*}}{(E+p)_{\text{jet}}} \]
- k_{\perp}-clus jet algorithm applied in γp-frame ($E_t(D^*\text{jet}) > 3 \text{ GeV}$)

Hemisphere method:
- momentum of c-quark approximated by momentum of rec. D^*-hemisphere
 \[Z_{\text{hem}} = \frac{(E+p_L)_{D^*}}{\sum_{\text{hem}}(E+p)_i} \]
- $\eta(\text{part}) > 0$ for p-remnant suppression
- thrust axis in plane perpendicular to γ used for hemisphere division

Analyses based on:
- D^* reconstructed in golden decay
- HERA I data with $L = 47 \text{ pb}^{-1}$

Differences of the methods:
- Jet method & hemisphere method:
 - Methods are different, i.e. hemisphere method sums more gluon radiation and does not need a hard scale (E_T-cut)
 - Hem. method is sensitive to threshold region!
Fragmentation functions (FF)

\[\frac{1}{\sigma} \frac{d\sigma}{dz_{\text{hem}}} \]

\(z_{\text{hem}} \)

\(R \)

\(\chi^2_{\text{min}} / \text{n.d.f.} = 40/4 \)

\(\alpha = 3.3 + 0.4 \)

\(\alpha = 3.3 - 0.4 \)

\(\alpha = 6.1 + 0.9 \)

\(\alpha = 6.1 - 0.8 \)

\(\alpha = 10.3 + 1.9 \)

\(\alpha = 10.3 - 1.6 \)

\(\alpha = 4.4 \)

-- NLO (HVQDIS) describes D^*-jet sample

-- Extracted FF (hemisphere method) differs by 4\(\sigma \) from FF extracted from jet sample

-- NLO (HVQDIS) fails to describe the no-D^*-jet data

28th April, 2009

Extraction of \(F_2^c \) from measurement of D^* cross sections

A.W. Jung
Fragmentation functions (FF)

- **If a hard scale** is involved:
 - jet- & hemisphere method agree well
 - FF also agrees with ZEUS and LEP data
- **If no hard scale** is involved:
 - discrepancy at charm production threshold in QCD models
 - much harder fragmentation

More information:
http://arxiv.org/abs/0808.1003v2

Fragmentation uncertainty from FF values used for extrapolation:

<table>
<thead>
<tr>
<th>Function</th>
<th>at-threshold:</th>
<th>above-threshold:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVQDIS</td>
<td>$\alpha = 6.0^{+1.0}_{-0.8}$</td>
<td>$\alpha = 3.3 \pm 0.4$</td>
</tr>
<tr>
<td>CASCADE</td>
<td>$\alpha = 8.2 \pm 1.1$</td>
<td>$\alpha = 4.6 \pm 0.6$</td>
</tr>
</tbody>
</table>

Threshold position from S (CMS energy of hard subprocess):

- HVQDIS: 70 ± 20 GeV2
- CASCADE: 70 ± 20 GeV2
- Fragmentation uncertainty assigned to NLO & CASCADE reweighted
- In visible phase space small influence
- $y-Q^2$ cross sections are used for the extraction of $F_2^c(x,Q^2)$
Extraction of $F_2^c(x,Q^2)$

Extrapolation to full phase space:

$$p_T(D^*) \rightarrow 0 \text{ GeV}$$

$$|\eta(D^*)| \rightarrow 10$$

- CASCADE & HVQDIS used, $f_{avg} \sim 3$
- Ratio CASCADE/HVQDIS within 10%
- BUT at high x differences of up to 80%
 - reason is the restricted phase space
 \rightarrow larger $\eta(D^*)$ range needed!

- Extrapolation uncertainty:
 - charm mass: $1.3 < m_c < 1.6$ GeV
 - renormalization & factorization scale:
 $$0.5 < \mu_{f,r}/\mu_0 < 2, \mu_0^2 = Q^2 + 4m_c^2$$
 - PDF: MRST vs. CTEQ
 - Fragmentation: as discussed...
 - Partial cancellations of uncertainties
Fc_2 in NLO DGLAP scheme

- 20x statistics of last Publication
- Extrapolation error: typically 5 - 10%
- Fragmentation: applied to sys. Error of data typically 2 - 7%
- HVQDIS using different proton PDFs describes the F^c_2 data reasonable
- Deviations at large x - originating from differences at cross section level

28th April, 2009
Extraction of F^c_2 from measurement of D^* cross sections
A.W. Jung
F_2^c in CCFM scheme

- **20x statistics of last Publication**
- **Extrapolation error:**
 - typically 2 - 6%
 - (no factorization scale & PDF variation)
- **Fragmentation:** applied to sys. Error of data
 - typically 2 - 7%
- **CASCADE describes the F_2^c data**
 - reasonable
- **Deviations at large x - originates from differences at cross section level**

More information:
- http://www-h1.desy.de/psfiles/confpap/ICHEP08/H1prelim-08-172.ps
- http://www-h1.desy.de/psfiles/theses/h1th-504.pdf

Extraction of F_2^c from measurement of D^* cross sections

A.W. Jung
This presentation!

• Most precise HERA measurement so far at $5 < Q^2 < 60$ GeV2
• Good agreement of different data sets (D*, D mesons, displaced tracks)

Talk by P. Thompson

Extraction of F_2^c from measurement of D* cross sections

28th April, 2009
Conclusions

- Full HERA II data sample for $F_2^c(x,Q^2)$ analysed $L \sim 350\text{pb}^{-1}$
- Most precise $F_2^c(x,Q^2)$ - on the way to final precision!
- Described by DGLAP & CCFM and consistent with other results

Closer look:
- Fragmentation uncertainty from Results of H1 measurement of Fragmentation fcts. estimated
- Larger differences in extrapolation at high x between models corresponds to most forward $\eta(D^*)$
- Extend phase space for cross section measurement towards larger $\eta(D^*)$ and smaller $p_T(D^*)$

Combination with other $F_2^c(x,Q^2)$ measurements possible

Talk by P. Thompson
Backup

Extraction of F_2^c from measurement of D* cross sections

A.W. Jung
Result of Study from my Ph.D. Thesis:

- "Fragmentation model" from H1 measurement of FF applied
- Ratio: CASCADE / HVQDIS

More information:

Backup: The HERA collider

ep collisions at $\sqrt{s} \approx 320$ GeV:

Collected Data samples:

- **Protons**: 920 GeV
- **Electrons**: 27.6 GeV

Two multi-purpose detectors: H1 & Zeus

Collected Luminosity: HERAI + HERAII ~ 0.5 fb$^{-1}$

28th April, 2009 Extraction of F_2^c from measurement of D^* cross sections A.W. Jung 22
Decay: $D^{*\pm} \rightarrow D^0 \pi^\pm \rightarrow (K^\mp \pi^\pm) \pi^\pm$

Higher resolution in mass difference:
\[\Delta M = M(K\pi\pi) - M(K\pi) \]

Larger phase space with use of electron-Σ-method: lower y of 0.02

Fit asymmetric shape: with ROOFIT

Additional D* cuts:
- $p_T(K) > 0.3$ GeV
- $p_T(\pi) > 0.3$ GeV
- $p_T(\pi_{slow}) > 0.12$ GeV
- $p_T(K) + p_T(\pi) > 2$ GeV
- $|M(D^0)| < 0.080$ GeV

D* sample:
- Stat. Error ~2%
- Syst. Error ~9%

Crystal-Ball:
\[
\begin{align*}
 f(x) &= \begin{cases}
 \left(\frac{n}{|\alpha|} \right)^n \exp\left(-\frac{1}{2} \alpha^2 \right) & \text{if } \frac{x-m}{\sigma} < -\alpha, \\
 \exp\left(-\frac{1}{2} \left(\frac{x-m}{\sigma} \right)^2 \right) & \text{if } \frac{x-m}{\sigma} \geq -\alpha
 \end{cases}
\end{align*}
\]

Determines in units of σ where: Gauss \rightarrow Expo

Background (Granet Parametrisation):
\[
f(x) = p_0 \cdot (x - m_{\text{Cutoff}})^{p_1} \cdot e^{-p_2 x} (-p_3 x^2)
\]

$\sigma_{\text{vis}}^{\text{tot}} = \frac{N_{D^*} \cdot (1 - r)}{\mathcal{L} \cdot \mathcal{B}(D^* \rightarrow K\pi\pi_{\text{slow}}) \cdot \epsilon \cdot (1 - \delta_{\text{rad}})}$
- Good description by NLO calculation
- Small deviations in forward $\eta(D^*)$ with full HERA2 statistics
- differences are located at low transverse momenta
- data shows sensitivity to the proton PDF
- CASCADE describes nicely the shape

https://www-h1.desy.de/psfiles/confpap/ICHEP08/H1prelim-08-072.ps
and http://www-h1.desy.de/psfiles/theses/h1th-504.pdf
In general NLO gives a good description of the data of single & double differential distributions.

Forward $\eta(D^*)$ at low $p_T(D^*)$: data is above the NLO-calculations.

Better precision of the data is needed – more bins in larger phase space.

Backup: D^* cross sections

Extraction of F_2^c from measurement of D^* cross sections

A.W. Jung
Backup: D* cross sections

Total integrated Cross section in Q^2: 5 - 100 GeV^2:

- **Data:** \((4.85 \pm 0.07\text{ (stat.)} \pm 0.42\text{ (sys.)}) \text{ nb}\)
- **HVQDIS (CTEQ):** \((4.43 \pm 0.69 - 0.47) \text{ nb}\)
- **HVQDIS (MRST):** \((4.17 + 0.59 - 0.37) \text{ nb}\)

Total integrated Cross section in Q^2: 100 - 1000 GeV^2:

- **Data:** \((0.24 \pm 0.02\text{ (stat.)} \pm 0.03\text{ (sys.)}) \text{ nb}\)
- **HVQDIS (MRST):** \((0.25 + 0.02 - 0.02) \text{ nb}\)

Talk by M. Brinkmann

28th April, 2009 Extraction of \(F_2^c\) from measurement of D* cross sections A.W. Jung 26