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Accelerator Collisions
SPS pp to PbPb at
2.1. Nuclear wave function. Ecm=17-30 AGeV
2.2. Factorization. RHIC pp to AuAu at
E.n=20-200 AGeV
o pp to PbPb at
3.1. Elliptic flow. LHC E. =5 514 ATeV

3.2. Hydrodynamical modeling.
3.3. Strong coupling calculations.

4.1.Successes and problems in radiative energy loss.
4.2. In-medium parton showers.

Not a full review, see e.g. the contributions to QGP4 in arXiv ‘09.

Theoretical Progress in HIC.



e UR whose goal is the

understanding of
through asymptotic freedom

o (NPA757 °05): the creation of

partonic matter with €>€cir(HM—QGP), with large coherence in
soft particle production, very early behaving like a quasi-ideal fluid
and extremely opaque to energetic partons traversing it.

Low multiplicity compared to Strong coherence in particle
pre-RHIC expectations production
v2 in agreement with ideal hydro Almost ideal fluid
Strong jet quenching Opaque medium

Theoretical Progress in HIC.
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o ': particles with momenta momenta ~ <p> (T).

o : those pQCD-computable in vacuum, whose
medium-modification characterizes it.

e At variance with other fields, here the has

to be considered: interplay between usual evolution (momentum)
variables and dimensions of the ‘medium’.

freeze-out
hadron gas

mixed phase??
QGP

reduction and ther-
NUCIGOar WF’ maliZation
factorization
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See the talk by Jochen Bartels.

A Félucleon ('.\‘, Qz)

, Rz, (x, Q%) =
Measured (on nuclei) '

dnd 2bd?p
Raauw = N _dNeP _
LV eoll m‘?‘;

Expected if no nuclear effects

Theoretical Progress in HIC.



o analysis at LO (EPS08) and (HKNO7/,dFS, EPS09)

and with through the Hessian method available:
HKN, EPS.
o : existing data do not cover the LHC kinematics:

PA@LHC and future eA colliders (talks on EIC and LHeC; Lappi).

Valence Sea quarks Gluons

= ALICE CMS
B Jets =
] Photons []
Il Hadrons @

Constrained by DIS

Present

. DIS+DY
Constrained by DY [these ranges are very approximative...

_ but valid in general for other analyses]
Constrained by Sum rules

Salgado in ECT™, July ‘08

Assumptions

Theoretical Progress in HIC: 2. Initial conditions.



analysis at LO (EPSO8) and (HKNO7,dFS, EPS09)
R p Re:
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® For ep, several models including saturation exist: dipole (GBW

and descendants), Regge,... is the striking feature
| suggestive, DGLAP also leads to it!). g
1 ,
< ~ 0.1A71/3
v 2mNRA

® Geometric scaling also works for
nuclei for x<0.02 (Rummukainen et al

'03, NA et al ‘'04):

<X"

()2 AT R2
\'r~__\ o <‘1/I/,
) 2 o D2

('.‘)7-, .'./l‘\ |

1 )

FLi (NMC )
FC (NMC )

§ = 0.79 £+ 0.02 (z < 0.02).

Q* x x A" 1
NA et al ‘04
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® RG functional equation:
Pp~O(1), p~O(1/Xs), mean field

version: BK, from LL to NLL (talks:
: slow partons . .
—— | classica Balitsky, Albacete, Weigert, Avsar).

'l" '?
: fast partons :
4 Source i new source

EQj radiated gluon ,

energy

: Pr~Pt~O(l/Xs) (Kovner; Triantafyllopoulos '05)

— Beyond tree diagrams: Pomeron loops, Hrrr (Kovner et al '09).
— Statistical mechanics analogies: sSFKPP, important for large E.
— Corrections to BK within JIMWLK: small! (Kovchegov et al ’08).

A B slope of tail
Data 0.25-0.3 21/3 0.75
fixed coupling 4.880s initial conditions 0.63
running coupling OK small evolution !

Theoretical Progress in HIC: 2. Initial conditions.



Vs (GeV/A)

Geometric scalin

. ; ____,] 130

used in nuclear sk il
collisions, for low- SF
intermediate pr N s PHOBOS
particle production. '
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.Several groups

attempt to prove factorization for gluon or quark production:
— |In momentum space, the BFKL Pomeron language (Braun, Bartels et al).
— |n the dipole model (Kovchegov et al).
— |n classical gluodynamics: expansion in projectile and target densities (Gelis
et al, Balitsky et al, McLerran et al, Marquet, Fukushima et al).
— Hadron wave function (Nikolaev et al, Kovner et al).

o |n : kt-factorization OK!?
for single gluon, not for quark or for
2 gluons. Several pieces evolving BK-like.

® |n cusual kt-factorization
not valid (quantitative inaccuracy?);
factorization becomes more involved.

Theoretical Progress in HIC: 2. Initial conditions.



3. Collective behavior:

3.1. Elliptic flow.

3.2. Hydrodynamical modeling.

See the reviews: Heinz et al 03, Hirano et al ’08,
Romatschke ’09.

3.3. Strong coupling calculations.

See the review Edelstein et al ’09.

Theoretical Progress in HIC.



([A"v k d \"A 1
(Zydp%da) dydp% 2T

[1 + 2vq cos (P — oR)

Reaction

+ 2v9c082 (0 — ORp) + . ..

2 )2
P — Dy
Vg = | u)\.,(()—()p = —*
PT

<l/ ‘2>

Er =

o , is usually interpreted in terms of a final
momentum anisotropy dictated by an initial space anisotropy.

' Hydromodel ' PHENIX Data’  STARData |

O T A KE
K*+K" ® A+A

O p+p

o
(X}

o
()

o
—

—@— E,_/A=40 GeV, NA49
—@— E,./A=158 GeV, NA49

Anisotropy Parameter v,

o

30
(1/S) dN_, /dy

Transverse Momentum p  (GeV/c)
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o : plus an (lattice) EOS, initial conditions and a
hadronization prescription.

solid: higher E.,
dashed. lower E,,

12 14

. dissipative T (arbitrary units)

(viscous) corrections.

.T,u.l/ . T,UI/ 1 H,ul/

e
wn

e [1*Vintroduces bulk viscosity
plus gradients of u: |st order

(shear viscosity), 2nd order (5

constants for a CFT),...
Theoretical Progress in HIC: 3. Collective behavior.
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o is suggested by:
— The quasi-ideal fluid behavior (A=(p0)-'<<R).
— The early isotropization/thermalization, difficult to explain in
pQCD (Romatschke et al '04, Xu et al ‘05).

— The strong quenching of high-energy particles.
o dynamics of N=4 SUSY QCD for
Nc,A=g?N.—* can be computed using classical gravity in AdSsxS>.

— Temperature through black-hole metric.

— No confinement, no asymptotic Minkowski
freedom, no quarks,... boundary

Fiing [(I)i(l--"'u )|, =W ] :<CX"(/ t "‘”ﬁ"»
i SYM

Oi is the SYM associated with
the supergravity field ®;.

Theoretical Progress in HIC: 3. Collective behavior. 14



— The energy loss of fast (Liu et al '06) and slow partons

(Gubser et al ’09).

— The energy deposition
and medium disturbance |
created by the energetic R3] |
partic le. AdS. —Sch\%farzschild B

|
|

horizon

— The early isotropization/thermalization problem.
— The hydrodynamical behavior (Janik et al '07; Kovchegov °07).

— The initial conditions for a HIC (Albacete et al ’08).

Theoretical Progress in HIC: 3. Collective behavior. 15



) Induced

) ) gluon
" radiation <g>
dN,
Q: slow colour Energy W

triplet —T_’ loss ?
QQ: slow colour u } I

———#®=_  Dissociation
singlet/octet ~ gc
. . v": colourless _
See the reviews: d’Enterria ’09; — T

v: colourless Controls
Casalderrey-Solana et al '07;Yellow
Report on Hard and EM Probes ‘04. bl
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TN
BDMPS

A S8 AFE x CragsgL?

: ghat
or gluon density
plus mean free
path, and length
(geometry,
dynamical
expansion).
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u2

"“ILPHENIX n° (Au+Au-0-5% Central) ASW+Hydro Au-Au 0-5% Central
- Global Sys’té'fﬁ;tic Uncertainty +12% RAA (n® Pr= 8 GeV), IAA (thrig =8-15GeV, Zr = 0.75)

Nagle in QM09
_ J<é> 10.3 £77 (1std.) £2¢ (Zstd.)

-
<q>—72 _14(1std) +2 (2std)
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o ; but e from ¢,b are too suppressed:
collisional contributions, hadronization, problems in pQCD?

® The extracted value of

| <ghat<I5 GeV?*/fm = interface with realistic medium (TECHQM).

® Calculations done in the high-energy approximation:
, energy-momentum conservation imposed a posteriori
= Monte Carlo.

o (Baier et al ‘0l),
independent (Poissonian) gluon emission: assumption! = Monte

Carlo (POM, PYQUEN,YaJEM, |EWEL, Q-PYTHIA).
® No role of in medium emissions; medium and vacuum
treated = modified DGLAP evolution (Guo et al '0l-..,,

Salgado et al '06, Armesto et al ‘07).

Theoretical Progress in HIC: 4. Hard probes.
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o ; but e from ¢,b are too suppressed:
collisional contributions, hadronization, problems in pQCD?

® [he extracted

STAR charged hadrons P> 6 GeV/ic

| <ghat<I5 Ge T g m (TECHQM).

Il: DGLV R+EL
IV: van Hees EL
----- V: BDMPS ¢

e Calculations ¢ l N:
, eNerguml” ~ '/’/ . K posteriori
= Monte Carlo -

-----------
.........
.......
.........
-----

° et al ‘0l),
independent (P AU | = Monte

* Au+AuU (0-5%)
Carlo (PQM, P
® No role of
treated

and vacuum
uo etal ’0Ol-...,

Salgado et al '06, Armesto et al ‘07).

Theoretical Progress in HIC: 4. Hard probes.
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o ; but e from ¢,b are too suppressed:
collisional contributions, hadroniz

® [T he extracted value of
| <ghat<15 GeV?*/fm = interface

First results appeared in HP2008!

Au+Au 0-20% p[*c, =21 GeV [Putschke HPO8]

~ Jets@RHIC

Hard cross sections:
Pb-Pb, \s = 5.5 TeV
CMS, lyl<2.5

d(5/dpT [mb/GeV]
o VYA

—h

STAR preliminary

—h —
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N —

—r
(-
o
— T|T|T| IlIlII|T| IlIIIIII| IIIIIIII| IIIIIIIII lIIlIIIIl IlIIIIII| IIIIIII‘ IIIIlII‘ IIIIIII‘ IIIIII|T| IIIIIIH'I I

—
Q
~

P per grid cell [GeV]

—A
<
on

1 event (0.5 nb™

I \

—
<
D

ly*+iet Z%jet!
- | | lIIIlII | | llllll“ | | IIIlIlI
A lot of work still needed 10 10° o 10°
g -ps . ( p, [GeV/c] or E" [GeV]

Salgado et al '06,Armesto et al ‘07).
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o : hadronization is not affected by the medium: looks

OK at RHIC for pT>7-10 GeV.
® The either radiatively (Q-PYTHIA) or

radiative+collisionally (JEWELL, PYQUEN); or the evolution is
enlarged due to momentum broadening (YaJEM).

Pfi,—>j (Z) — > Ly (Z) + AP@—>J (Z7 t, E7 L7 qA)
o : factorization no emission/emission/no
emission/... (Sudakov/splitting/Sudakov/...) holds in the medium, and
the evolution scale (t,kt,0) can be related with the medium length

— both to be proved (Jet Calculus in a medium).

Theoretical Progress in HIC: 4. Hard probes.
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® The MC’s generically reproduce the
— Particle spectrum softens (jet quenching).
— Larger emission angles (jet broadening).
— Intra-jet multiplicity enlarges.

Theoretical Progress in HIC: 4. Hard probes.
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Q-PYTHIA

Fragmentation function Angular distribution

E. =100 GeV

jet

g=5 GeV’lfn E St ey L=2 fm
vacuum _ qg=50 GeI*""x‘fm (=50 GeV*/fm

TP NPT PRI IS | TR PP Il S |

0 01 02 03 04 05 06 0.7 08 09 6‘l

lllllllllllllllllllll lll
0 0102030405060.70809 1 0 2 46 81012141618 20
k(GeV) |

: jet reconstruction in a large
background (small clustering
parameters versus out-of-'cone’
medium modification).

Theoretical Progress in HIC: 4. Hard probes.



Q-PYTHIA

Fragmentation function Angular distribution

| 3
E,,=100 GeV > 1°R ‘
- n

\& Missing items: e.g.

W

Medium-induced gluon radiation modifies

the color structure of the shower
[not included yet]

medium modification).

Theoretical Progress in HIC: 4. Hard probes.



® The (low
multiplicity, collective flow, jet quenching) have triggered a lot of

ongoing theoretical activity on (to mention just a few):
A) Small-x physics and particle production in nuclear collisions.

B) Early thermalization and viscous hydrodynamics.
C) Strong coupling computations: AdS/CFT for HIC.
D) New formalisms for eloss: correlations, jets, Monte Carlo,...

® The offer huge possibilities to verify or falsify
the picture arising from RHIC with new observables: jets, identified
heavy flavor, EW boson production,... Much work has been done but

much remains to be done.

® Points A) and D) in the list above have clear
: link with plans on

Theoretical Progress in HIC. 21



