Forward physics capabilities of CMS with the CASTOR and ZDC detectors

DIS09, 26-30 April 2009, Madrid

B. Roland

on behalf of the CMS Collaboration

Outline

- CMS Instrumentation in the Forward region:
 - Forward Calorimeters Castor and ZDC
- Physics program:
 - Parton Shower evolution
 - Multiple Partonic Interactions
 - Diffraction
 - Constrain UHE cosmic rays models
- Processes Signatures:
 - Multi-Jet analysis with a Forward Jet
 - Central Forward Activity Correlation
 - Rapidity Gaps Measurement

CASTOR Calorimeter

- forward region coverage $-6.6 < \eta < -5.2$
- z = -14.37 m
- octagonal cylinder, inner radius = 3.7 cm, outer radius = 14 cm
- Cerenkov calorimeter, signal transmitted to PMTs through aircore lightguides
- sandwich structure of W absorber plates and quartz plates as active material
- ullet 2 electromagnetic sections = 20.12 X_0 12 hadronic sections, total depth = 10.3 λ_I
- 16-fold segmentation in ϕ (Tower) 14-fold segmentation in zno segmentation in η
- \bullet total 16 * 14 = 224 channels
- ▶ half CASTOR (with 2 octants in readout) in test beam in May 2009
- full CASTOR slightly reduced in depth to be installed in June 2009 (192 channels)

CASTOR energy resolution

● Results from the 2007 test beam [CMS NOTE-2008/022]

• from 18 % at 10 GeV to 6 % at 200 GeV • from 25 % at 50 GeV to 15 % at 300 GeV

Zero Degree Calorimeters (ZDCs)

- located at 140 m from the interaction point
- Cerenkov calorimeter with a sandwich structure of W and quartz
- electromagnetic section, 19 X_0 , 5-fold horizontal segmentation to measure the pseudorapidity of the forward energy deposits
- hadronic section, 5.6 λ_I , 4-fold longitudinal segmentation
- **2** DC can measure neutral particles (γ, π^0, n) produced at $|\eta| > 8.1$ full acceptance for neutral energy flow at $|\eta| > 8.4$

Zero Degree Calorimeter

ZDCs are integrated into CMS

ZDCs energy resolution

Description of pp collision

Matrix Element associated to the hard scattering

- exact QCD calculation at given fixed order
- hard scale $Q = p_t, M$ considered subsystem
- produced at given value of Bjorken x_b

Parton Shower links hard scattering to proton

- takes into account higher order contributions
- by resumming a subset of leading diagrams at each order
- which diagrams are leading depends on x, Q^2
- Various models for the Parton Shower evolution

DGLAP evolution

BFKL evolution

Color Dipole Model

- low to high Q^2
- \bullet high to low x
- ordered in k_t
- lacksquare ordered in x

lacksquare $\sim \ln Q^2$

 $ightharpoonup \sim \ln(1/x)$

- independent dipole radiation
- lacksquare unordered in k_t
- BFKL-like scenario
- ARIADNE

PYTHIA

Multi-Jet analysis with a Forward Jet

- Differences between various models for the Parton Shower evolution are more prominent in the forward region
 - DGLAP: ordering in k_t : softest emissions are the ones closest to the proton remnant direction
 - BFKL/CDM: no k_t ordering: forward emissions can be arbitrarily large as long as they are allowed by kinematics
 - → study forward jet to distinguish between the various models
- At HERA [Eur.Phys.J.C46:27-42,2006]

- RAPGAP: matching between LO ME and PS generated according to DGLAP
 - DIR: one DGLAP evolution chain fails to describe data
 - RES: two DGLAP evolution chains
- CDM: independent gluon radiation
 - Parton Shower dynamics beyond the DGLAP direct approximation

$\Delta \eta$ distribution in Multi Jet events

- Study events with at least 3 jets, one of them is a forward jet
 - order jets by decreasing rapidity: $\eta_{fwdjet} > \eta_{jet2} > \eta_{jet1}$
 - define rapidity separation between jets: $\Delta \eta_1 = \eta_{jet2} \eta_{jet1}$ $\Delta \eta_2 = \eta_{fwdjet} - \eta_{jet2}$

- look at $\Delta \eta$ distribution to distinguish between the various PS models
- ullet select events with different topologies to look at breaking of k_t ordering
 - $\Delta \eta_1$ small, $\Delta \eta_2$ large (6 < $\Delta \eta_2$ < 10): enhances the available phase-space in x for BFKL-type radiations between fwd jet and dijet
 - $\Delta \eta_1$ small, $\Delta \eta_2$ small: all 3 jets in forward region
 - $\Delta \eta_1$ large: possible BFKL evolution bewteen 2 jets of dijet system

See also Salim Cerci's talk about jet studies in the Hadronic Forward calorimeter

Mueller-Navelet (MN) dijet event

- event in which a jet is detected in each of the forward directions
- process characterized by two hard scales: p_{t1} , p_{t2} of the forward jets
 - suppress emissions ordered in k_t described by DGLAP
- MN jets separated by a large rapidity interval $\Delta \eta \sim \ln(s/p_{t1}p_{t2})$
 - ullet open the phase-space in x and enhance BFKL-type radiations
- study azimuthal decorrelation $\Delta \phi$ between Mueller-Navelet dijet $(\Delta \phi = \phi_1 \phi_2 \pi)$ to access parton dynamics beyond DGLAP
 - DGLAP evolution: 2 jets more balanced in p_t (at LO $\Delta \phi = 0$)
 - BFKL evolution: higher order emissions, flatter $\Delta \phi$ distribution

- MN dijet $\Delta \phi$ distribution in NLL BFKL for CDF kinematics, $p_{t1} = p_{t2} > 5$ GeV [C. Marquet and C. Royon, Phys. Rev. D **79** (2009) 034028]
- for increasing $\Delta \eta$, more and more BFKL-type radiations, flatter $\Delta \phi$ distribution
- One CASTOR jet and one backward jet for various $\Delta \eta$ and CASTOR jet energies

Forward Jets in CASTOR

- Which profile do we expect for a forward jet in CASTOR?
- Generator study with PYTHIA, CTEQ6L pdf, QCD jets mode
- Study at hadron level, no detector simulation applied
- Look at particle multiplicity and particle energy distribution in fwd jet as a function of the distance in ϕ between jet axis and jet particles (CASTOR has no segmentation in η)

• On average ~ 10 particles in the octant around jet axis ~ 100 GeV / particle in the octant around jet axis

CASTOR Jets - Hadron Jets

- Generator level analysis of QCD jets with PYTHIA, CTEQ6L pdf
- Study at hadron level, no detector simulation applied
- CASTOR has no segmentation in η , 16-fold segmentation in ϕ (tower)
 - a CASTOR jet is identified by the most energetic tower to which the two neighboring ones are added
 - particle energy smeared according to test beam data
 - particle energy > 1 GeV to take noise into account
- Look at energy and ϕ correlation between CASTOR jet and hadron jet

Underlying Event (UE)

- UE is defined as everything except the hard scattered components
 - Initial and Final State Radiation: gluon emissions
 - Multiple Parton Interactions: additional softer parton scattering
 - Beam-Beam Remnants: particles coming from the proton breakup
- UE is unavoidable background (jet reconstruction, isolation cut)
- Study UE in transverse region wrt leading jet $(60^{\circ} < \Delta \phi < 120^{\circ}, |\eta| < 1)$

- MPI tuned to describe Tevatron data give large difference at LHC
- MPI will need to be tuned as soon as data available

Underlying Event and CASTOR

- MPI occur between the spectator partons of the colliding protons
 - Energy flow in forward region strongly affected by MPI
 - Energy deposit in CASTOR sensitive to the various MPI models
- MPI induce correlations between activity in central and forward region
 - study by looking at the energy deposit in CASTOR
- Generator level analysis of inclusive QCD processes with PYTHIA, for several MPI tunes: Rick Field tune A, Sandhoff-Skands tune S0

- [A.Bunyatyan and Z.Rurikova, HERA-LHC proceedings]
- Without MPI: no long-range correlations are observed
- \blacksquare With MPI: larger $E_{CASTOR} \longrightarrow$ higher central particle multiplicity
- CASTOR may contribute to distinguish between various MPI tunes

More details about UE and MPI in Nick Van Remortel's talk

CASTOR as veto detector

- SD W production and SD dijet production: Large Rapidity Gap [CMS PAS DIF-07-002 and CMS PAS FWD-08-002]
- energy weighted η distribution of stable particles in SD and non-diff W:

■ Tower multiplicity in CASTOR calorimeter to select diffractive signal
More details about this in Maria Margherita Obertino's talk

ZDC pp Forward Physics program

- **■** ZDC as veto detector for diffractive events selection
 - Low energy threshold
 - Fast enough answer to go into level 1 trigger
 - Online veto for diffractive events selection
 - Also used to suppress diffractive proton dissociation background
- Correlation between neutral forward energy flow and particle multiplicity in the central region
- Measure Forward neutron production
 - ullet Low x part of the gluon pdf
 - Constrain UHE cosmic rays models
- Luminosity Monitoring
 - from p-p bremsstrahlung
 - from forward neutron production

Tuning of UHE cosmic rays models

Cosmic rays energy spectrum

1/km² ster.day

3/km² ster.century

E GeV/particle

10-16

10-18

No "laboratory" data available above 100 TeV → very uncertain extrapolations to UEH

■ LHC:
$$\sqrt{s} = 14 \text{ TeV}$$

— $E_{lab} = 10^5 \text{ TeV}$

Tuning of Monte Carlo models for UHE cosmic rays from measurement of forward neutral particles flow

Conclusion

- Forward Cerenkov Calorimeters Castor and ZDC
- Physics program:
 - Multi-Jet analysis with a Forward Jet
 Parton Shower dynamics beyond DGLAP
 - Central Forward Activity Correlation
 Multiple Partonic Interactions in Underlying Event
 - Veto detector for Diffractive events selection
 - Constrain UHE cosmic rays models
- Status of the detectors:
 - ZDCs are integrated into CMS
 - half CASTOR in test beam in May 2009
 - full CASTOR to be installed in June 2009

Back-up Slides

QCD at low x in pp collision

- At low x: partons undergo long Parton Shower before they meet forward particles production can arise in two ways
- lacksquare Collision between a low x and a high x parton
 - hard scattering system goes forward: forward production from ME
 - relation between x_{min} of low x parton and η of forward system: $x_{min} = \frac{Q}{\sqrt{s}}e^{-\eta}$, with $Q = p_t$ for forward jet production M for Drell-Yan pair production
 - at LHC: for Q > 10 GeV and $\eta \sim 6$: $x_{min} \ge 10^{-6}$ x_{min} decreases by factor 10 every 2 units of rapidity
 - \longrightarrow sensitivity to saturation in low x region
- ullet Collision between two low x partons
 - hard scattering system produce central dijet
 - forward jet comes from QCD evolution of Parton Shower
 - evolution from high x (forward jet) to small x (central dijet)
 - → study BFKL dynamics, higher order contributions to PS

Forward Jets (from ME) and saturation

- generator study with PYTHIA, CTEQ5L pdf, QCD jets mode
- ullet Matrix Elements are mainly qg and gg scatterings in the t channel
- "detector" level: stable particles in CASTOR are merged into towers
- p_t^{max} for jet in CASTOR ~ 35 GeV x range from 10^{-6} to 10^{-5}

• sensitivity to saturation: usual CTEQ5L pdf and saturated EHKQS pdf

reduction less clear for high p_t jets on detector level

Forward Jets and Parton Shower

- Differences between various models for the Parton Shower Evolution are more prominent in the forward region
 - ullet DGLAP: ordering in k_t : softest emissions closest to proton remnant
 - BFKL/CDM: no k_t ordering: forward emissions can be arbitrarily large as long as allowed by kinematics
 - forward jet study to disentangle between the various models
- event selection: 1 forward jet in CASTOR (5.2 < η < 6.6) 1 central dijet ($|\eta|$ < 2, p_t > 10 GeV)

ullet rapidity separation between central and forward jets: enhances the available phase-space in x for BFKL-type radiation

Forward Jets and Parton Shower

- Predictions from PYTHIA (DGLAP) are compared to predictions from ARIADNE (CDM) ($L < 1 \ pb^{-1}$)
- Two different pdf sets CTEQ6L, CTEQ6.5
- Tune A parameters for the description of Multiple Partons Interactions
- Study at the CASTOR jet level (no detector simulation applied)

Sensitivity to Parton Shower at high energy where difference between DGLAP and BFKL-like behaviours is bigger than pdf uncertainty: CDM gives more hard jets in CASTOR region

Forward Jets and Parton Shower

- event selection: 1 forward jet in CASTOR (5.2 < η < 6.6) 1 central dijet ($|\eta|$ < 2, p_t > 25 GeV) (CMS can not trigger on central jets as low as 10 GeV)
- ▶ PYTHIA (DGLAP) compared to ARIADNE (CDM) $(L < 1 \ pb^{-1})$
- One pdf set CTEQ6L, Multiple Partons Interactions Tune A
- Study at the CASTOR jet level (no detector simulation applied)

● Measurement can still disentangle between different models for Parton Shower: CDM (BFKL-like emissions) gives more hard jets in CASTOR

Jet profiles in CASTOR

- Generator level analysis of QCD jets with PYTHIA, CTEQ6L pdf
- At least one gluon from the ME required to be in CASTOR acceptance
- At hadron level: Energy distribution as a function of the distance in η and ϕ between the gluon and the particles in CASTOR
- At "detector" level: distribution as a function of the difference in ϕ sector

• jets stand out from the "pedestal energy deposit"