

DIS 2009

Workshop on Deep-Inelastic Scattering and Related Subjects DIS 2009, 26-30 April 2009, Madrid

Studying the BSM Higgs sector by proton tagging at the LHC

V.A. Khoze (IPPP, Durham & PINP)

(27th April)

(Based on works of extended Durham group)

main aim: to highlight recent development in the theory and phenomenology of the CED Higgs production

PLAN

- 1. Introduction (gluonic Aladdin's lamp)
- **2. Central Exclusive Diffractive Production** (only a taste).
- 3. Prospects for CED MSSM Higgs-boson production.
- 4. Other BSM scenarios.
- 5. Conclusion.

The main advantages of CED Higgs production

 Prospects for high accuracy (~1%) mass measurements (irrespectively of the decay mode).

- Quantum number filter/analyser.
 (0++ dominance; C, P-even)
- H ->bb opens up (Hbb- coupl.)
 (gg)CED bb in LO; NLO,NNLO, b- mass effects controllable.
- For some areas of the MSSM param. space CEDP may become a discovery channel!
- H→WW*, TT (less challenging experimentally + smaller bgds., better PU cond.)
- A handle on the overlap backgrounds- Fast Timing Detectors (10 ps timing or better). (Krzystof, Jim)
- New leverage -proton momentum correlations (probes of QCD dynamics, CP- violation effects...)
 - ★ LHC: 'after discovery stage', Higgs ID...... How do we know what we've found?
 mass, spin, couplings to fermions and Gauge Bosons, invisible modes...
 → for all these purposes the CEDP will be particularly handy!

KMR technology (implemented in ExHume MC)

(Khoze-Martin-Ryskin 1997-2009)

$$\sigma_{pp}(M^2,...) = L_{eff}(M^2,y) * \sigma_{hard}(M^2,...)$$

$$\frac{\partial^2 L_{eff}}{\partial y \partial M^2} M^2 = S^2 * L(M^2)$$

$$\sigma(\text{CDPE}) \sim 10^{-4} \sigma \text{ (incl)}$$

focus on
$$\sigma^{bgd}_{hard}(M^2,...)$$

 $L_{\rm eff}(M^2,y)$ \rightarrow the same for Signal and Bgds

$$\begin{array}{cc} \mathbf{\underline{L}_{\mathrm{eff}}} & \sim & & \\ \hline \hat{b^2} & N \int \frac{dQ_t^2}{Q_t^4} \; f_g(x_1, x_1', Q_t^2, \mu^2) f_g(x_2, x_2', Q_t^2, \mu^2) \; \bigg|^2 \end{array}$$

contain Sudakov factor T_g which exponentially suppresses infrared Q_t region $\to pQCD$

$$< Q_t >_{SP} \simeq M / 2 * \exp(-1/\overline{\alpha}_s) \approx 2 GeV \gg \Lambda_{QCD},$$

 $\overline{\alpha}_S \simeq (N_C / \pi) * \alpha_S(M) * C_{\gamma}$

 $T_g + anom.dim. \rightarrow IR filter$

 S^2 is the prob. that the rapidity gaps survive population by secondary hadrons \rightarrow soft physics

New CDF results (dijets, $\gamma \gamma$, χ_c) (Christina, Jim)

"soft" scattering can easily destroy the gaps

(KKMR-01; BBKM-06; RMK-07-09,FHSW- 07-09; GLMM-07-09. 2

soft-hard factorizn

eikonal rescatt: between protons conserved

enhanced rescatt: involving intermediate partons - broken

Subject of hot discussions: S²

Far more theoretical papers than the expected number of the CED produced Higgs events

'Well, it is a possible supposition.'
'You think so, too?'
'I did not say a probable one'

CURRENT EXPERIMENTAL CHECKS

- Exclusive high-Et dijetsCDF: data up to (Et)min>35 GeV (PRD-2008) (Christina)
 - 'Factorization breaking' between the effective diffractive structure functions measured at the Tevatron and HERA.
 - The ratio of high Et dijets in production with one and two rapidity gaps
 - •CDF results on exclusive charmonium CEDP, (CDF, PRL) (Jim)
 - •Energy dependence of the RG survival (DO, CDF).
- **Central Diffractive Production of γγ (....ππ,ηη) (CDF, PRL-07) (Jim)** (in line with the KMRS calculations) (3 candidates & $_{2}$ more candidates in the new data)
- Leading neutrons at HERA

LET THE DATA TALK!

Only a large data set would allow to impose a restriction order on the theoretical models

Comparison with KMR

More direct comparison with KMR calculations including hadronization effects preferred

CDF out-of-cone energy measurement (cone R=0.7): ▶20-25% at E_TJet=10-20 GeV ▶10-15% at E_TJet=25-35 GeV

Good agreement with data found by rescaling parton p_T to hadron jet E_T

Observation of Exclusive Charmonium Production and $\gamma\gamma \to \mu^+\mu^$ in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

CDF Collaboration, arXiv:0902.1271 [hep-ex]

FIG. 2: Mass $M_{\mu\mu}$ distribution of 402 exclusive events, with no EM shower, (histogram) together with a fit to two Gaussians for the J/ψ and $\psi(2S)$, and a QED continuum. All three shapes are predetermined, with only the normalizations floating. Inset: Data above the J/ψ and excluding $3.65 < M_{\mu\mu} < 3.75 \text{ GeV/c}^2$ ($\psi(2S)$) with the fit to the QED spectrum times acceptance (statistical uncertainties only).

KMRS -2004: **130 nb** →**90 nb** (PDG-2008)

(role of higher spin states, NLO-effects, DD.... need further detailed studies)

(Jim, Christina)

TABLE I: Numbers of events fitted to classes J/ψ , $\psi(2S)$, QED and χ_{c0} . Backgrounds are given as percentages of the fit events, and efficiencies are to be applied to the events without background. The stated branching fraction \mathcal{B} for the χ_{c0} is the product of the $\chi_{c0} \to J/\psi + \gamma$ and $J/\psi \to \mu^+\mu^-$ branching fractions [11]. The cross sections include a 6% luminosity uncertainty.

Class	J/ψ	$\psi(2S)$	$\gamma\gamma \rightarrow \mu^+\mu^-$	$\chi_{c0}(1P)$
Acceptances:				
Detector(%)	18.8 ± 2.0	54 ± 3	41.8 ± 1.5	19 ± 2
Efficiencies:				
μ -quality(%)	33.4 ± 1.7	45 ± 6	41.8 ± 2.3	33 ± 2
Photon(%)	-	-	-	83 ± 4
Events(fit)	286 ± 17	39 ± 7	77 ± 10	65 ± 8
Backgrounds:				
Dissoc.(%)	9 ± 2	9 ± 2	8±2	11 ± 2
Non-excl.(%)	3 ± 3	3 ± 3	9 ± 5	3 ± 3
$\chi_{c0}(\%)$	4.0 ± 1.6	-	-	-
Events(corr.)	243 ± 21	34 ± 7	65 ± 10	56 ± 8
$\mathcal{B}.\sigma_{FKR}(\mathrm{pb})$	$28.4 {\pm} 4.5$	1.02 ± 0.26	2.7 ± 0.5	8.0 ± 1.3
$\mathcal{B} \rightarrow \mu^{+}\mu^{-}(\%)$	5.93 ± 0.06	0.75 ± 0.08	-	0.076
				± 0.007
$\frac{d\sigma}{dy} _{y=0}(\text{nb})$	$3.92 {\pm} 0.62$	0.53 ± 0.14		76 ± 14

Are the early LHC runs, without proton taggers, able to check estimates for pp → p+A+p ?

KMR: 0802.0177

Possible checks of:

(i) survival factor S²:

W+gaps, Z+gaps

(ii) generalised glups $f_g: \gamma p \rightarrow Yp$

- (iii) Sudakov factor T: 3 central jets
- (iv) soft-hard factorisation #(A+gap) evts

 (enhanced absorptive corrⁿ) #(inclusive A) evts

 with A = W, dijet, Y...

without 'clever hardware':
for H(SM)→bb at 60fb-1 only
a handful of events due to
severe exp. cuts and low efficiencies,
though S/B~1.

H->WW mode at M>135 GeV. (B.Cox et al-06)

enhanced trigger strategy & improved timing detectors (FP420, TDR)

situation in the MSSM is **very different** from the SM

- Higgs sector of the MSSM: physical states h, H, A, H^{\pm} Described by two parameters at lowest order: SM-like $M_{\rm A}, \, \tan \beta \equiv v_2/v_1$
- Search for heavy MSSM Higgs bosons ($M_A, M_H > M_Z$): Decouple from gauge bosons
 - \Rightarrow no HVV coupling
 - ⇒ no Higgs production in weak boson fusion
 - \Rightarrow no decay $H \to ZZ \to 4\mu$

Large enhancement of coupling to $b\bar{b}$ (and $\tau^+\tau^-$) in region of high $\tan\beta$

The backgrounds to the diffractive H bb mode are manageable!

some regions of the MSSM parameter space are especially *proton tagging friendly* (at large tan β and M ≤ 250 , $S/B \geq 20$)

KKMR-04; HKRSTW-07; B. Cox, F.Loebinger, A.Pilkington-07, C. Royon et al

Myths

For the $b\overline{b}$ channel bgds are well known and incorporated in the MCs:

Exclusive LO - bb production (mass-suppressed) + gg misident+ soft & hard PP collisions.

Reality

The background calculations are still in progress: (uncomfortably & unusually large high-order QCD and b-quark mass effects).

About a dozen various sources (studied by Durham group)

- admixture of |Jz|=2 production.
- 2 NLO radiative contributions (hard blob and screened gluons)
- NNLO one-loop box diagram (mass- unsuppressed, cut-non-reconstructible)
- 4 'Central inelastic' backgrounds (soft and hard Pomerons)
- 5 b-quark mass effects in dijet events

12

The MSSM and more 'exotic 'scenarios

$$pp \rightarrow p + \phi + p$$

If the coupling of the Higgs-like object to gluons is large, double proton tagging becomes very attractive

- The intense coupling regime of the MSSM (E.Boos et al, 02-03)
- •CP-violating MSSM Higgs physics (B.Cox et al. 03, KMR-03, J. Ellis et al. -05)

 Potentially of great importance for electroweak baryogenesis
- Triplet Higgs bosons (CHHKP-2009)
- •Fourth Generation Higgs
- NMSSM (J. Gunion, et al.)
- Invisible' Higgs (BKMR-04)

There is NO experimental preference for a SM Higgs. Any Higgs-like boson is **Very** welcome!

Extended Higgs sectors: "typical" features

Search for heavy MSSM Higgs bosons ($M_A, M_H \gg M_Z$):

Decouple from gauge bosons

 \Rightarrow no HVV coupling

⇒ no Higgs production in weak boson fusion

 \Rightarrow no decay $H \rightarrow ZZ \rightarrow 4\mu$

Large enhancement of coupling to $b\bar{b}$, $\tau^+\tau^-$ for high $\tan\beta$

 \Rightarrow Decays into $b\bar{b}$ and $\tau^+\tau^-$ play a crucial role

"Typical" features of models with an extended Higgs sector:

- A light Higgs with SM-like properties, couples with about SM-strength to gauge bosons
- Heavy Higgs states that decouple from the gauge bosons

Four integrated luminosity scenarios

(S.Heinemeyer, VAK, M.Ryskin, W.J.Stirling, M.Tasevsky and G.Weiglein- 07,08)

(bb, WW, ττ- modes studied)

1. L =
$$60fb^{-1}$$
: 30 (ATLAS) + 30 (CMS): 3 yrs with L= 10^{33} cm⁻²s⁻¹

2. L = 60fb⁻¹, effx2: as 1, but assuming doubled exper.(theor.) eff.

3. L = 600fb⁻¹: 300 (ATLAS) + 300 (CMS) : 3 yrs with L= 10^{34} cm⁻²s⁻¹

4. L = 600fb⁻¹,effx2: as 3, but assuming doubled exper.(theor.) eff.

upmost!

We have to be open-minded about the theoretical uncertainties.

Should be constrained by the early LHC measurements (KMR-08)

Ratio of signal rate for the light MSSM Higgs boson over the SM rate in the h o b ar b channel

 $m_{\rm h}^{\rm max}$ benchmark scenario:

New Tevatron data still pouring

 \Rightarrow Large enhancement possible for relatively small $M_{
m A}$ and large aneta

Studying the MSSM Higgs Sector by Forward Proton Tagging at the LHC, Georg Weiglein, EPS07, Manchester, 07/2007 - p.10

Ratio of signal rate for the heavy $\mathcal{CP} ext{-even MSSM}$ Higgs boson over the SM rate, H o bar b channel

 $m_{\rm h}^{\rm max}$ benchmark scenario:

 \Rightarrow Huge enhancement compared to SM case, up to factor 400

Studying the MSSM Higgs Sector by Forward Proton Tagging at the LHC, Georg Weiglein, EPS07, Manchester, 07/2007 – p.14

NEW DEVELOPMENT

Current Tevatron limits implemented.

CDM scenarios analysed

Compliant with the Cold Dark Matter and EW bounds

4 Generation scenarios

(S.Heinemeyer, VAK, M.Ryskin, W.J.Stirling, M.Tasevsky and G.Weiglein 07-08)

- bb backgrounds revisited (Shuvaev +KMR)
- Neutral Higgs in the triplet model (CHHKP-09)

Still to come

- **ττ** -mode, in particular, trigger strategy
- Charged Higgs bosons in MSSM and triplet models

HKRTW-08

- •Tevatron limits shown.
- •Updated theory calculations
- New bb-backgrounds

Mhmax benchmark scenario Improved theory & background 3σ contours

•"600x 2" scenario covers nearly the whole allowed region for the light Higgs.

For large tan β heavy Higgs reach goes beyond 235 GeV.

•For the H-boson the area reachable in the "60"-scenario is to large extent ruled out by the Tevatron data.

CDM benchmarks

$H o bar{b}$

MSSM SUMMARY

- **●** Detailed analysis of prospects for CED production of \mathcal{CP} -even MSSM Higgs bosons, $pp \rightarrow p \oplus h, H \oplus p$
- Light MSSM Higgs boson, $h \to b\bar{b}$ channel: almost complete coverage of $M_{\rm A}$ -tan β plane (and case of light SM Higgs) at the 3σ level with $600~{\rm fb}^{-1}\times 2$
 - \Rightarrow CED channel may yield crucial information on bottom Yukawa coupling and \mathcal{CP} properties
- Heavy \mathcal{CP} -even Higgs boson, $H \to b\bar{b}$ channel: discovery of a $140~{\rm GeV}$ Higgs for all values of $\tan\beta$ with $600~{\rm fb}^{-1}\times 2$ In high $\tan\beta$ region: discovery reach beyond $M_{\rm H}\approx 200~{\rm GeV}$ also for lower luminosities
- 'Semi-exclusive' production of A looks challenging
- ⇒ Interesting physics potential for probing MSSM Higgs sector; further experimental + theoretical efforts desirable

M. Chaichian, P.Hoyer, K.Huitu, VAK, A.Pilkington, JHEP (in print)

Higgs bosons in a triplet model

- Extend SM by addition of higher representations of Higgs sector in addition to the doublet.
 - One real and one complex triplet chosen ala Georgi and Machacek.
- 4 neutral scalar Higgs' bosons, charged and doubly charged Higgs also.
- Enhancement of Higgs-fermionantifermion coupling by 1/c_H² where c_H is a doublet-triplet mixing parameter.
- Large enhancement in CEP production cross section for c_H < 1 (top-loop).
- LEP constraints on Higgs mass weaker as coupling to weak bosons reduced by c_H².
- Tevatron will be able to access c_H=0.2 in tau-tau decay channel in near future.

An additional bonus: doubly charged Higgs in photon-photon collisions → factor of 16 enhancement

Simulation by A. Pilkington

Results: Triplet Higgs production

Expected mass distributions given 60 fb-1 of data.

Simplest example of the BSM Higgs physics

Beyond the 3SM generation at the LHC era

4-5 September 2008

http://indico.cern.ch/conferenceDisplay.py?confId=33285

Enhancement of $\Gamma(H \rightarrow gg)$

at 220 GeV:

CED (H→WW/ZZ) rate – factor of ~9; at 120 GeV

CED (H→bb) rate – factor of ~5.

 $B(H\rightarrow\gamma\gamma)$ is suppressed

H→ZZ - especially beneficial at M= 200-250 GeV

CDF & D0

L (fb ⁻¹)	Stat. Sign		
60	3.7		
60* <mark>2</mark>	5.2		
600	11.1		
600*2	15.7		

CONCLUSION

God Loves Forward Protons

- Strongly suppressed QCD backgrounds in the forward proton mode provide a potential for direct determination of the Hbb Yukawa coupling, for probing CP properties and for measuring Higgs mass and width.
- Forward Proton Tagging would significantly extend the physics reach of the ATLAS and CMS detectors by giving access to a wide range of exciting new physics channels.
- FPT has the potential to make measurements which are unique at LHC and challenging even at a ILC.
- For certain BSM scenarios the FPT may be the Higgs discovery channel.

