

Krzysztof Piotrzkowski

Universite Catholique de Louvain, CP3 Center

- Introduction: Forward view at CMS
- New forward proton detectors for CMS
- Summary/Outlook

XVII International Workshop on Deep-Inelastic Scattering and Related Subjects

Madrid, 26-30 April, 2009

Forward detectors @ IP5

Early forward physics @ CMS

Low-x QCD with forward jets

Underlying event tuning & cosmic rays shower modeling

Exclusive di-jets, di-photons and di-leptons production & absolute luminosity measurements

Vector meson photoproduction

Observation of hard-diffraction

Forward proton detectors @ highluminosity

Low cross-sections exclusive states: New Physics

Physics with 1 pb⁻¹ - 100 pb⁻¹

Use Large Rapidity Gap signatures

No pile-up conditions assumed

Optimal places for tagging at the LHC: @ 220/240m and 420m from IP

HECTOR: JINST 2, P09005 (2007)

FP420 proposal

The FP420 R&D Project: Higgs and New Physics with forward protons at the LHC

M. G. Albrow¹, R. B. Appleby², M. Arneodo³, G. Atoian⁴, I.L. Azhgirev⁵, R. Barlow². I.S. Bayshev⁵, W. Beaum ont⁶, L. Bonnet⁷, A. Brandt⁸, P. Bussey⁹, C. Buttar⁹, J. M. Butterworth¹⁰, M. Carter¹¹, B.E. Cox^{2,+}, D. Dattola¹², C. Da Via¹³, J. de Favereau⁷, D. d'Enterria¹⁴, P. De Remigis¹², A. De Roeck^{14,6,+}, E.A. De Wolf⁶, P. Duarte^{8,†}, J. R. Ellis¹⁴, B. Florins⁷, J. R. Forshaw¹³, J. Freestone¹³, K. Goulianos¹⁵, J. Gronberg¹⁶, M. Grothe¹⁷, J. F. Gunion¹⁸, J. Hasi¹³, S. Heinemeyer¹⁹, J. J. Hollar¹⁶, S. Houston⁹, V. Issakov⁴, R. M. Jones², M. Kelly¹³, C. Kennev²⁰, V.A. Khoze²¹, S. Kolva¹³, N. Konstantinidis¹⁰, H. Kowalski²², H.E. Larser²³, V. Lemaitre⁷, S.-L. Liu²⁴, A. Lyapine¹⁰, F.K. Loebinger¹³, R. Marshall¹³, A. D. Martin²¹, J. Monk¹⁰, I. Nasteva¹³, P. Nemegeer⁷, M. M. Obertino³, R. Orava²⁵, V. O'Shea⁹, S. Ovyn⁷, A. Pal⁸, S. Parker²⁰, J. Pater¹³, A.-L. Perrot²⁶, T. Pierzchala⁷, A. D. Pilkington¹³, J. Pinfold²⁴, K. Piotrzkowski⁷, W. Plano¹³, A. Poblaguev⁴, V. Popov²⁷, K. M. Potter², S. Rescia²⁸, F. Roncarolo², A. Rostovtsev²⁷, X. Rouby⁷, M. Ruspa³, M.G. Ryskin²¹, A. Santoro²⁹, N. Schul⁷, G. Sellers², A. Solano²³, S. Spivey⁸, W.J. Stirling²¹, D. Swoboda²⁶, M. Tasevsky³⁰, R. Thompson¹³, T. Tsang²⁸, P. Van Mechelen⁶, A. Vilela Pereira²³, S.J. Watts¹³, M. R. M. Warren¹⁰, G. Weiglein²¹, T. Wengler¹³, S.N. White²⁸, B. Winter¹¹, Y. Yao²⁴, D. Zaborov²⁷, A. Zampieri¹², M. Zeller⁴, A. Zhokin^{6,27}

FP420 R&D Collaboration

To appear in JINST

gap

p

 $5\sigma \text{ H} \rightarrow \text{bb}, \text{ M}_{h}^{\text{max}}, \mu = +200 \text{ GeV}, arXiv:0708.3052$

(iv:0808.0322 [hep-ph],arXiv:0806.1097 [hep-ph], arXiv:0806.0302 [hep-ex]

(Light) SUSY case

Figure 3. Distribution of missing invariant mass W_{miss} for the LM1 MSSM benchmark for the integrated luminosity L = 100 fb⁻¹. It starts at about 2 m_{LSP} for SUSY, at zero for the WW background.

$$W_{miss} = \sqrt{E_{miss}^2 - P_{miss}^2}$$

Forward detectors crucial for kinematics reconstruction (charged dilepton states only!):

Unique contribution!

Forward proton detectors @ 420 m

• Installation of Si detectors in cryogenic region of LHC, i.e. cryostat redesign needed

- Strict space limitations rule out Roman Pot technology, use movable beampipe instead
- Radiation hardness required of Si is comparable to those at SLHC, use novel 3-D Silicon technology
- To control pile-up background use very fast timing detectors ($\sigma \sim 10$ ps)

Acceptance: (At nominal LHC $\beta^* = 0.5$ m) 0.002 < ξ < 0.02

2 QUARTICs

New Forward Detectors for CMS - K. Piotrzkowski

B Moving Hamburg pipe concept

Successfully used at HERA: Robust and simple design, + easy access to detectors

Motorization and movement control to be cloned from LHC collimator design

27/04/09

Moving pipe: Detector 'pockets'

In preparation for 2009 beam tests:

CMS 3 D configurations

BOLLA, PURDUE

- CMS PSI46 100 μm ×150 μm
- Implemented 2 variations
 - 2 columns pixel
 - 4 columns pixel

Profit from CMS R&D for SLHC:

Beam tests of first 3D modules with CMS pixel chips planned this summer

GasToF News: Cosmic-ray tests

Calibration with exclusive di-muons

 $pp \rightarrow pp \ l^+l^-$

~ <u>700 μμ events in 100 pb⁻¹</u> (single-interaction data @ 14TeV)

- Nearly pure QED process
- Calibration/alignment of FP420 detectors
 (about 40% protons detected!):

Expected resolution of $x=E\gamma/E$ is ~5.10-6 !

Calibration procedure itself can be very well controlled using exclusive Upsilon data!

BOTTOMLINE:

Exclusive low-mass dimuons crucial for FP420

Forward detectors @ IP5

Motivation for FP240

 Tagging at 420m and 220/240m is complementary – together ~ 0.1–10% energy loss range is covered !

- This leads to significantly higher tagged cross sections
- Both 240 m locations are 'warm&free' just bare beam-pipes

 At IP5, locations at 220 m are occupied by TOTEM -> go at 240m - it is still possible to send triggers to CMS!

 One does not need to modify the LHC beamline -> can be done before FP420 and be treated as *proof-of-principle* project + interesting physics as a bonus

LHC beam-line close to 240 m

Available space of ~ 12 m !

• The FP420 R&D report published, is basis of the CMS (and ATLAS) FP420 proposal

• The R&D phase ends with a complete cryostat design and a prototyped, tested concept for high precision near-beam detectors at LHC

• CMS evaluated the FP420 proposal and asked for some further work before preparation of TDR – we are in position to start it now; we will propose to include FP240 detectors

• The physics case for forward proton tagging spans central exclusive production, $\gamma\gamma$ and photon-proton physics, diffractive physics, gap survival /underlying event, study of gluon jets

• For low incremental cost, forward proton detectors add significant physics potential to CMS with no effect on the operation of the LHC.

Taken on 14/1/2009

CMS

Q6

Quench resistors

~240m from IP5

