Gluon and dipole cascade
on the light-front

Anna Staśto
Penn State & RIKEN BNL & INP Kraków

Work done in collaboration with Leszek Motyka, arXiv:0901.4949

DIS 2009, Madrid, April 28th
Outline

Modified kernel for dipole evolution.

Light-front wave-functions with exact kinematics.

Gluon fragmentation amplitudes.

Relation with the maximally helicity violating (MHV) amplitudes.
Light-front formalism

Dirac

- Infinite momentum frame: a limit of a Lorentz frame moving in the -z direction with a (nearly) the speed of light.

Kogut, Soper

- Isomorphism with the Galilean dynamics in 2 dimensions:
 - P^- → Hamiltonian
 - P^+ → Mass
 - P_T → 2-dim. momentum
Non-covariant (light-front) time ordered diagram

Energy denominators

Difference of light-cone energies:

\[D_n = P^- - \sum_i k_i^- \]

Initial state \hspace{1cm} Intermediate states
Dipole evolution at high energy

Quark-antiquark pair emitting longitudinally soft gluon. Dipole evolution.

Energy denominators in light cone perturbation theory

\[\tilde{D}_1 = \frac{1}{P^- - [(P - k_1 - k_2)^- + k_1^- + k_2^-]} \approx \frac{1}{k_2^-} \]

High energy limit: strong ordering in longitudinal momenta

\[k_2^+ \ll k_1^+, P^+ \quad k_2^- \equiv \frac{k_2^2}{2k_2^+} \]

Wave function with 1 gluon

\[\Psi^{(1)}(k_1, k_2, z_1, z_2) = 2g_t a_2 \frac{\xi_2}{k_2^2} \left[\Psi^{(0)}(k_1, z_1) - \Psi^{(0)}(k_1 + k_2, z_1) \right] \]

Wave function without gluons
In transverse coordinate space

\[\Phi^{(1)}(x_{01}, x_{02}; z_1, z_2) = -\frac{igt_a}{\pi} \left(\frac{x_{20}}{x_{20}^2} - \frac{x_{21}}{x_{21}^2} \right) \cdot \xi_2 \Psi^{(0)}(x_{01}; z_1) \]

Dipole kernel in the limit of high energy:

\[\frac{d^2 x_{02} x_{01}}{x_{02}^2 x_{12}^2} \]

Dipole evolution in rapidity:

\[\frac{\partial N_{01}}{\partial Y} = \bar{\alpha}_s \int \frac{d^2 x_2}{2\pi} \frac{x_{01}^2}{x_{02}^2 x_{12}^2} [N_{02} + N_{12} - N_{01}] \]

\(Y \) rapidity

\(N_{01} \) dipole scattering amplitude (related to the gluon density)

No restrictions on the transverse coordinates (or momenta).
In the high energy limit:

\[
\bar{D}_1 = \frac{1}{P^- - [(P - k_1 - k_2)^- + k_1^- + k_2^-]} \approx \frac{1}{k_2^-}
\]

\[
k_2^+ \ll k_1^+, P^+ \quad k_2^- \equiv \frac{k_2^2}{2k_2^+}
\]

For the consistency of the calculation we should take:

\[
\frac{k_2^2}{k_2^+} \geq \frac{k_1^2}{k_1^+}
\]

For more emissions

\[
\ldots \frac{k_4^2}{k_4^+} > \frac{k_3^2}{k_3^+} > \frac{k_2^2}{k_2^+} > \frac{k_1^2}{k_1^+}
\]

Ordering in the fluctuation time: Dokshitzer, Marchesini, Salam

\[
\tau \sim \frac{k^+}{k^2}
\]

Longitudinal and transverse momenta tied together.
Modified dipole kernel

Quasi-local approximation

\[D_1 \simeq \frac{1}{k_1^- + k_2^-} \]

Keep the energy of the parent emitter

\[\Psi^{(1)}(k_1, k_2, z_1, z_2) = 2gt_\alpha \frac{\varepsilon_2 \cdot k_2}{k_2^2 + k_1^2 k_2^2} [\Psi^{(0)}(k_1, z_1) - \Psi^{(0)}(k_1 + k_2, z_1)] \]

Approximate Fourier transform

\[\Phi^{(1)}(x_{02}, x_{12}; z) \sim gt^\alpha \left(\bar{Q}_{01} K_1(\bar{Q}_{01} x_{02}) \frac{\varepsilon_2 \cdot x_{02}}{x_{02}} - \bar{Q}_{01} K_1(\bar{Q}_{01} x_{12}) \frac{\varepsilon_2 \cdot x_{12}}{x_{12}} \right) \Phi^{(0)}(x_{01}; z) \]

Modified Bessel functions of the second kind.

\[\bar{Q}_{01} \simeq \frac{1}{x_{01}} \sqrt{\frac{k_2^+}{k_1^+}} = \frac{1}{x_{01}} \sqrt{z} \]

\[z \text{ longitudinal momentum fraction} \]

\[\ln \frac{1}{z} \sim y \text{ rapidity} \]
Modified dipole kernel

\[d^2x_2 \left(\frac{\bar{Q}_{01} K_1(\bar{Q}_{01}x_02) \xi_2 \cdot x_02}{x_02} - \bar{Q}_{01} K_1(\bar{Q}_{01}x_12) \frac{\xi_2 \cdot x_12}{x_12} \right)^2 \]

\[\frac{x_02}{x_01} \sqrt{z} \to 0 \]

 Dipole kernel with Bessel-Macdonald functions:

- Energy dependent cutoff in impact parameter: exponential tails, range depends on the energy.
- Violation of conformal invariance in 2-dimensions.
- Recovering original dipole kernel in the high energy limit.

\[\bar{Q}_{01} \simeq \frac{1}{x_01} \sqrt{\frac{k^+_2}{k^+_1}} = \frac{1}{x_01} \sqrt{z} \]
Impact parameter and NLL correction

Cutoff on configuration of large dipoles

\[x_{02} \gg x_{01} \& x_{12} \sim x_{02} \]

exponential behavior

\[\mathcal{K} \sim \exp \left(- \frac{x_{02}}{x_{01}} \sqrt{z} \right) \]

Recovering part of NLL contribution from explicit calculation by Balitsky and Chirilli (non-conformal part).

\[\mathcal{K}_{\text{non-conf}}^{\text{NLO}} \otimes N_Y \rightarrow - \frac{\bar{\alpha}_s^2}{\pi} \int \frac{d^2 x_2 x_{01}^2}{x_{02}^4} \log^2 \left(\frac{x_{02}}{x_{01}} \right) \[... \]
Light cone wave functions

* Previously: modified kernel, only some corrections in the energy denominators. Still eikonal vertices.

* Keep kinematics exact through the complete evolution: both vertices and energy denominators kept exact.

Gluon in the initial state. Dynamics similar to the dipole model.

Helicity conserved through the whole cascade.
Recurrence relations between wave functions

\[
\Psi_{n+1}(k_0, k_1, \ldots, k_n) = \frac{g}{\sqrt{\xi_{01}}} \frac{\epsilon(-) \nu_{01}}{D_n + \xi_{01} \nu_{01}^2} \Psi_n(k_0, k_2, \ldots, k_n)
\]

\[z_{01} = z_0 + z_1\]
\[k_{01} = k_0 + k_1\]

Reduced mass:
\[\xi_{01} = \frac{z_0 z_1}{z_0 + z_1}\]

Relative velocity:
\[\nu_{01} = \frac{k_0}{z_0} - \frac{k_1}{z_1}\]

Isomorphism with non-relativistic dynamics apparent in the case of the exact kinematics.
Light cone wave function
Case of the on-shell incoming gluon.
Can resum the wave function completely.

\[
-D_{n+1} \Psi_{n+1}(1, 2, \ldots, n+1) = g \sum_{i=1}^{n} \frac{v^*_{(i,i+1)}}{\sqrt{\xi_{(i,i+1)}}} \Psi_n(1, 2, \ldots, (i i + 1), \ldots, n+1) \quad n \to n + 1
\]

\[
-D_n \Psi_n(1, 2, \ldots, n) = g \sum_{k=1}^{n-1} \frac{v^*_{(k,k+1)}}{\sqrt{\xi_{(k,k+1)}}} \Psi_{n-1}(1, 2, \ldots, (k k + 1), \ldots, n) \quad n - 1 \to n
\]

\[
\Psi_n(1, 2, \ldots, n) = (-1)^{n-1} g^{n-1} \Delta^{(n)} \frac{1}{\sqrt{z_1 z_2 \cdots z_n}} \frac{1}{\xi_{(1 \cdots n-1)n} \xi_{(1 \cdots n-2)(n-1) n} \cdots \xi_{1(2 \cdots n)}} \times \frac{1}{v_{(1 \cdots n-1)n} \, v_{(1 \cdots n-2)(n-1) n} \cdots \, v_{1(2 \cdots n)}}
\]

\[
v_{(i_1 i_2 \ldots i_p)(j_1 j_2 \ldots j_q)} = \frac{k_{i_1} + k_{i_2} + \ldots + k_{i_p}}{z_{i_1} + z_{i_2} + \ldots + z_{i_p}} - \frac{k_{j_1} + k_{j_2} + \ldots + k_{j_q}}{z_{j_1} + z_{j_2} + \ldots + z_{j_q}},
\]

\[
\xi_{(i_1 i_2 \ldots i_p)(j_1 j_2 \ldots j_q)} = \frac{(z_{i_1} + z_{i_2} + \ldots + z_{i_p})(z_{j_1} + z_{j_2} + \ldots + z_{j_q})}{z_{i_1} + z_{i_2} + \ldots + z_{i_p} + z_{j_1} + z_{j_2} + \ldots + z_{j_q}},
\]

\[
\{ k \} \quad \{ n - k \}
\]
Relation to Parke-Taylor amplitudes

\[M_n = \sum_{\{1, \ldots, n\}} \text{tr}(t^{a_1} t^{a_2} \ldots t^{a_n}) \, m(p_1, \epsilon_1; p_2, \epsilon_2; \ldots; p_n, \epsilon_n), \]

Maximally Helicity Violating amplitude for gluons: 2 to n

\[\langle ij \rangle = \sqrt{z_i z_j} \, \epsilon^{(+)} \cdot \left(\frac{k_i}{z_i} - \frac{k_j}{z_j} \right) \]

\[\langle ij \rangle = \sqrt{z_i z_j} \, \epsilon^{(+)} \cdot v_{ij}, \]

Tree level, Parke-Taylor formula

\[m(1^-, 2^-, 3^+, \ldots, n^+) = ig^{n-2} \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \ldots \langle n-2 \, n-1 \rangle \langle n-1 \, n \rangle \langle n \rangle}. \]
Scattering from light -cone wave functions

Rapidity gap
Helicity conserving.
High energy approximation: instantaneous gluon in the light-cone gauge

Sum over initial and final state emissions
Final state emissions: gluon fragmentation

Initial state → scattering → Final state emissions: gluon

Amplitude for fragmentation:

\[T[(12...n) \rightarrow 1, 2, \ldots, n] = g^{n-1} \left(\frac{z(12...n)}{z_1 z_2 \ldots z_n} \right)^{3/2} \frac{1}{v_{12}v_{23} \ldots v_{n-1,n}} \]
Duality: wave function vs fragmentation

Wave function initial state

$$\Psi_n \sim \frac{1}{v(12...n-1)n v(12...n-2)(n-1)n \cdots v1(2...n)}$$

Fragmentation final state

$$T_n \sim \frac{1}{v_{12}v_{23} \cdots v_{n-1}n}$$

Nearly identical expressions (the same topology of graphs): different combinations of momenta

$$v(i_1i_2...i_p)(j_1j_2...j_q) = \frac{k_{i_1} + k_{i_2} + \cdots + k_{i_p}}{z_{i_1} + z_{i_2} + \cdots + z_{i_p}} - \frac{k_{j_1} + k_{j_2} + \cdots + k_{j_q}}{z_{j_1} + z_{j_2} + \cdots + z_{j_q}}$$
Relation with MHV

\[\tilde{\Psi}_2(1, 2) = T[(12) \rightarrow 1, 2] + \Psi_2(1, 2'), \]

Master formula for arbitrary number of gluons

\[\tilde{\Psi}_n(1, 2, \ldots, n) = \sum_{m=1}^{n} \sum_{(1 \leq n_1 < n_2 < \ldots < n_{m-1} \leq n)} \Psi_m((1 \ldots n_1)(n_1 + 1 \ldots n_2) \ldots (n_{m-1} + 1 \ldots n)) \times T[(1 \ldots n_1) \rightarrow 1, \ldots, n_1] T[(n_1 + 1 \ldots n_2) \rightarrow n_1 + 1, \ldots, n_2] \ldots T[(n_{m-1} + 1 \ldots n) \rightarrow n_{m-1} + 1, \ldots, n]. \]
and final states in the theory, which needs to be further exploited.

Their dependence on the kinematical invariants. This result, namely that the wave function and the fragmentation amplitudes we will use by the exchange of a virtual gluon and final states in the theory, which needs to be further exploited.

2 to 2 amplitude

\[M(0; a \to 1, \ldots, n; b) \approx \frac{s}{t} \times \tilde{\Psi}_n \]

Spinor products:

\[\langle ii + 1 \rangle = \sqrt{z_i z_{i+1}} v_{ii+1} \]

Recover MHV amplitude in the light cone formalism

\[M(0; a \to 1, \ldots, n; b) \approx g^{n+1} \frac{\langle a0 \rangle^4}{\langle a0 \rangle \langle 01 \rangle \langle 12 \rangle \langle n-1n \rangle \langle nb \rangle \langle ba \rangle} \]

Upper part: 1 to n with momentum transfer. Obtained by summing all possible attachments.
Summary

Reformulation of the dipole kernel to include kinematical effects.

Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.

Resummation of the light cone wave function with exact kinematics.

Resummation of the fragmentation amplitudes. Duality between the fragmentation and the wave functions.

Derivation of the scattering amplitudes in the light cone formalism. Consistency check with (new derivation of) the MHV amplitudes.