Diffraction and vector mesons working group summary

Theory part

M. Diehl

Deutsches Elektronen-Synchroton DESY

30 April 2009

had 15 theory talks

Dipole formulation and beyond

- dipole description of diffraction A Łuszczak, H Weigert*, T Lappi*, M Machado, C Marquet
- diffractive parton densities I Schoeffel
- generalized parton distributions T Teubner, D Müller, J Wagner
- diffraction in pp and $p\bar{p}$ collisions D Ivanov, V Khoze, C Weiss, F Chevallier, F Schwennsen
- interactions of metastable exotic hadrons D Milstead

in common session with Structure Functions

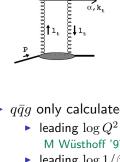
The color dipole formulation

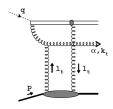
Dipole formulation and beyond

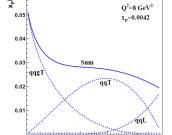
•00000000

- describes variety of ep processes at small x with common input (dipole scattering amplitude)
 - inclusive $(F_2, F_L, F_2^{c\bar{c}}, F_2^{b\bar{b}})$
 - exclusive (DVCS, vector meson production)
 - inclusive diffraction $(F_2^D, F_2^{D(c\bar{c})})$
- allows incorporation of saturation dynamics non-linear evolution in x: JIMWLK, BK, ...
- provides tests (and helps fix parameters) of theory for color glass condensate
 - $\rightarrow pp, pA, AA$ collisions

plen. talk N Armesto


next slides: concentrate on description of inclusive diffraction

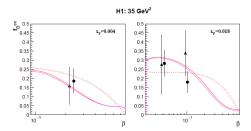

 $ightharpoonup q\bar{q}$ fully calculated


Dipole formulation and beyond

00000000

- ightharpoonup scaling contrib'n to F_T
- ▶ 1/Q² suppressed contib'n to F_L at large β
- contribution to $F_{2,I}^{D(c\bar{c})}$ negligible

 $ightharpoonup q\bar{q}g$ only calculated in limits


α, k,

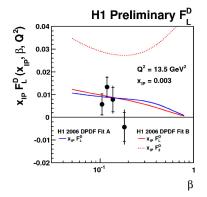
- M Wiisthoff '97
- talk A Łuszczak
- leading $\log 1/\beta$ Bartels et al '02; Munier, Shoshi '03 cross-talk with JIMWI K evolution talk H Weigert
- interpolation between two forms talk T Lappi
- ightharpoonup no evaluation for $c\bar{c}q$ phenomen. analyses use workarounds

plot: A Łuszczak, K Golec-Biernat

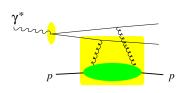
arXiv:0812.3090

Fractional charm contribution

- Fractional contribution $f^{D(charm)} = \sigma_r^{D(charm)}/\sigma_r^D$ of the diffractive charm to total diffractive cross section.
- **9** Up to 20 30%.

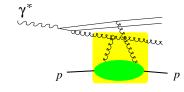

talk A Łuszczak

Dipole formulation and beyond


00000000

- \triangleright charm component in F_2^D not generally negligible (same holds for charm component in F_2)
- data call for theory improvements

- $q \bar{q} g$ in leading $\log Q^2$ gives no F_L^D
- data urgently call for theory improvements



talk D Šalek

Dipole formulation and beyond

000000000

from dipole formulation can extract diffractive PDFs same graphs in both approaches, reduce dipole formulae to appropriate kinematics

realized long ago: Buchmüller, Gehrmann, Hebecker '98

resulting PDFs to be understood at low scale DGLAP evolution \rightarrow further radiation $\rightarrow q\bar{q}g, q\bar{q}gg, \dots$

blue curves from dipole model

red curves from DGLAP fit to F_2^D

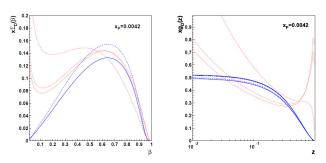
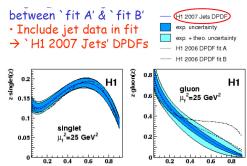
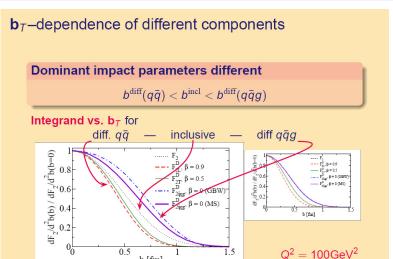



FIG. 7: The diffractive distributions for singlet quark $x\Sigma_D(x_F,\beta)$ and gluon $xg_D(x_F,z,Q^2)$ for $Q^2=4m_c^2=7.84$, 10, 100 GeV² (from bottom to top) and $x_F=0.0042$. The solid lines correspond to the GBW parameterisation while the dashed lines to the CGC parameterisation. The dotted lines show the parton distributions from the DGLAP fit [25] to the H1 data.

talk A Łuszczak, plots: arXiv:0812.3090

- good agreement for diffract. quark dist. at small z dipole model misses evolution effects
- \triangleright from dipole model no peak of diffract. gluon dist. at large z


- $lackbox{DGLAP}$ fits to F_2^D alone poorly constrain $g^D(z)$ at large z talk L Schoeffel
 - find full agreement within errors for fits to latest published H1 and ZEUS data
 - even within large uncertainties on $g^D(z)$ cannot describe CDF exclusive dijets without genuine exclusive mechanism
- $lackbox{but: } g^D(z)$ with strong peak at large z strongly disfavored by diffractive dijet electroproduction talk P Newman

000000000

Impact parameter dependence of dipole scattering amplitude

- gives t dependence in diffraction and exclusive channels essential input from HERA measurements of t slopes
- ▶ interest in itself: transverse distribution of color charge in nucleon and in nuclei
- ▶ talk T Lappi: non-trivial preferred b for $q\bar{q}$ and $q\bar{q}g$ final states
 - \rightarrow in diffraction on nuclei find enhancement at large β suppression at low β
- studies for DVCS and vector meson production on nuclei roles of elastic contribution and breakup of nucleus talks by M Machado and C Marguet

b [fm]

talk T Lappi

 $(x_{\rm P}=10^{-3})$

 $Q^2 = 1 \text{GeV}^2$

Dipole formulation and beyond

00000000

Generalized parton distributions

Dipole formulation and beyond

- description of exclusive processes from small-x regime up to fixed-target energies
 - deeply virtual Compton scattering and meson production exp. talks in common session with Spin WG plenary talk E Aschenauer
 - encouraging prospects for γp and γA collisions at LHC
 - J/Ψ and Υ : talk M Csanád
 - timelike Compton scattering: $\gamma p \to \gamma^* p \to \ell^+ \ell^- p$

talk J Wagner

ightharpoonup exclusive diffraction in pp collisions

talk C Weiss

- combined t- and x-dependence
 - → three-dimensional imaging of partons in nucleon or nuclei

towards agreement in a long standing theoretical dispute

talks by T Teubner, D Müller

- ▶ previous claim (A Shuvaev et al. '99): at small x can calculate generalized distribution (at t=0) from usual PDF
 - "pocket formula"

$$\frac{H^g(x,x,t=0)}{xg(x)} = \frac{2^{\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+3)} \quad \text{if} \quad xg(x) \sim x^{-\lambda}$$

and analogous expression for quarks

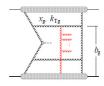
- original argument based on approximating x-moments of GPDs fails due to subtleties in inverse moment transform
- explicit examples of GPDs violating Shuvaev formula but consistent with all known requirements
- Shuvaev formula to be regarded as an ansatz
 to be checked against data
 fits to DVCS: talk D Müller
- ▶ ansatz can readily be extended to case where xg(x) or xq(x) not following a power law talk T Teubner

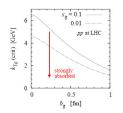
exclusive diffraction $pp \rightarrow pp + \text{Higgs}$: a window for detailed studies of Higgs in scenarios beyond Standard Model

talk V Khoze

MSSM SUMMARY

- Detailed analysis of prospects for CED production of \mathcal{CP} -even MSSM Higgs bosons, $pp \to p \oplus h, H \oplus p$
- Light MSSM Higgs boson, h o b ar b channel: almost complete coverage of M_A -tan β plane (and case of light SM Higgs) at the 3σ level with $600 \text{ fb}^{-1} \times 2$
 - ⇒ CED channel may yield crucial information on bottom Yukawa coupling and \mathcal{CP} properties
- Heavy \mathcal{CP} -even Higgs boson, $H \to b\bar{b}$ channel: discovery of a 140 GeV Higgs for all values of $\tan \beta$ with 600 fb⁻¹ × 2 In high $\tan \beta$ region: discovery reach beyond $M_{
 m H} pprox 200~{
 m GeV}$ also for lower luminosities
- 'Semi-exclusive' production of A looks challenging
- ⇒ Interesting physics potential for probing MSSM Higgs sector; further experimental + theoretical efforts desirable


Dipole formulation and beyond


How large is rapidity gap survival probability? (physics of multiple parton interactions) cf. plenary talk J Bartels

talk C Weiss:

Dipole formulation and beyond

Correlations: Absorption of hard spectators

- Black-disk regime of QCD: Parent partons in evolution experience strong absorptive interactions with small-x gluons in other proton
 - Critical k_T and impact parameter dependence from QCD dipole model (gluon dipoles!)
 - No emissions: Possible, but Sudakov-suppressed
- Reduces S^2 at LHC by at least factor ~ 3 , much weaker effect at Tevatron
- Larger impact parameters
 - \rightarrow steeper p_{1T}, p_{2T} dependence!

Important, should be studied in detail

FHSW, PRD 75:054009, 2007

Newsticker: more headlines

Dipole formulation and beyond

 unified description of diffraction with intact proton (low t) and proton breakup (high t)

 $\langle p|T_{q\bar{q}}|p\rangle\langle p|T_{q\bar{q}}|p\rangle \ \ {\rm and} \ \ \langle p|T_{q\bar{q}}T_{q\bar{q}}|p\rangle \ \ {\rm in \ CGC} \qquad \qquad {\rm talk \ C \ Marquet}$

► BFKL for jets at Tevatron and LHC azimuthal dist. of Mueller-Navelet jets, gaps between jets study with NLO BFKL kernels talk F Chevallier

- Exclusive forward jets at LHC: $pp \rightarrow p + 3$ jets k_T unintegrated gluon GPD, qqq wave fct. of proton talk D Ivanov
- ▶ perturbative odderon in ultraperipheral collisions at LHC from odderon-pomeron interference in $\gamma\gamma \rightarrow (\pi^+\pi^-) + (\pi^+\pi^-)$ talk F Schwennsen
- Interaction of metastable heavy hadrons in detectors bound states of heavy new particles with q, \bar{q}, g ; hadronic interactions turning charged into neutral particles talk D Milstead

- new diffractive data from HERA and Tevatron demand and help theory to improve
- ▶ many prospects and new ideas to study QCD in diffraction at LHC and hopefully at a future facility for ep and eA collisions

Apologies

to those speakers whose work I have only mentioned but not discussed

Special thanks

- to my co-convenors and the convenors of the Structure Function and Spin WGs
- to J Bartels, K Golec-Biernat, C Marquet, D Müller, and T Teubner for discussions
- to Agustin, Cecilia, Claudia, and Juan for being wonderful hosts