DIS 2009

XVII International Workshop on Deep-Inelastic Scattering and Related Subjects 26-30 April 2009, Palacio de Congresos de Madrid http://www.ft.uam.es/DIS2009

Topics Structure Functions and Low-x **Diffraction and Vector Mesons Electroweak Physics and BSM** Hadronic Final States and OCD **Heavy Flavours Spin Physics Future Facilities** Search for Excited Leptons and Quarks at HERA Gabriel Stoicea **IFIN-HH Bucharest** For H1 Collaboration

H1 and HERA 1994-2007

HERA II:

o Lumi upgrade

- H1 detector at HERA, asymmetric design
- Large increase in data from HERA II and polarised etp data
- Final H1 dataset: e⁻ p : 184 pb⁻¹ ; e[±] p : 475 pb⁻¹
- · Presented here: Excited Leptons and Quarks

27.04.2009

Excited fermions : production and decay at ep colliders

Searches for q^* with H1 (e[±]p, 475 pb⁻¹)

<u>channel</u>

q*	$\rightarrow q\gamma$	 1 isolated electromagnetic cluster with P_τ^γ > 35 GeV at least 1 jet with P_τ^{jet} > 20 GeV Reduced NC-DIS: no other isolated electron with E_e > 10 GeV in LAr 			
q* -	→ qW/Z→qq	 ¶ ■ at least 3 jets with P_T^{jets} > 50, 30, 15 GeV ■ Reduced multi-jet photoproduction : highest P_T jet is not associated to the W or Z candidate 			
q* -	$\rightarrow qW \rightarrow qev \bullet P_{T}^{mis}$	* + e + jet bkg : NC-DIS and photoproduction			
q* -	$ ightarrow qW ightarrow q\mu v ightarrow P_T^{mis}$	$s^{s} + \mu + jet$ bkg : SM W production			
q* -	$\rightarrow qZ \rightarrow qee$ • jet	+ 2e bkg : e - pairs			
q* -	→ qZ→qµµ ■ jet	+ 2μ bkg : μ - pairs			
	e^{\pm} e^{\pm} q q^{*} γ, Z, W, g p X	\circ u-channel included for the exchange of excited quarks Non-negligible cross section for the high q* masses and low values of Λ			

Searches for q^* with H1 ($e^{\pm}p$, 475 pb^{-1})

- \cdot Derive limits @ 95% C.L. on f/A as a function of $M_{q^{\star}}$ for all channels combined
- Conventional assumptions:
 - $f_s = 0$ (no s interactions)
 - f,f' comparable; only examine f = +f'

10-2

100

150

200

250

350

300

q* Mass [GeV]

Limits on f/Λ from q^* production

 \Box Limit driven by q* \rightarrow qy at low mass, W/Z decays contribute at higher masses

□ Limits greatly improved with respect to HERA I limit

HERA: Best sensitivity for masses beyond the LEP reach

Searches for v* with H1 (e-p, 184 pb-1)

Search for ν^* at HERA $(e^-p, 184 \text{ pb}^{-1})$					
Channel	Data	SM	Signal Efficiency [%]		
$\nu^* \rightarrow \nu \gamma$	7	12.3 ± 3.0	50 - 55		
$\nu^* \rightarrow eW \rightarrow eq\bar{q}$	220	223 ± 47	40-65		
$\nu^* \rightarrow eW \rightarrow e\nu\mu$	0	0.40 ± 0.05	35		
$\nu^* {\rightarrow} eW {\rightarrow} e\nu e$	0	0.7 ± 0.1	45		
$\nu^* \rightarrow \nu Z \rightarrow \nu q \bar{q}$	89	95 ± 21	25 - 55		
$\nu^*{\rightarrow}\nu Z{\rightarrow}\nu ee$	0	0.19 ± 0.05	45		

- Good agreement with the SM and no resonance observed in mass spectra
- \cdot Derive limits @ 95% C.L. on f/ as a function of $M_{v^{\star}}$ for channels combined
- Conventional assumptions:
- v^* is insensitive to f_s (=0)
- f,f' comparable; examine f = -f' or f = +f'

Limits on f/Λ from v^* production

Limits at 95% C.L. on f/Λ from all channels combined

HERA: Best sensitivity for masses beyond the LEP reach

Searches for e* with H1 ($e^{\pm}p$, 475 pb^{-1})

Limits on f/Λ from e* production

Summary-for 200 GeV < M_{f*} < 300 GeV, HERA has the best sensitivity

Back-up slides

Expression of the Vff* couplings (V = γ ,Z,W)

e* Limits including the CI Production Model

• In addition to the GM interactions, a CI model can be used to describe the f \leftrightarrow f* transitions, described by:

$$\mathcal{L}_{CI} = \frac{4 \pi}{2 \Lambda^2} j^{\mu} j_{\mu} \quad \text{with } j_{\mu} = \eta_L \bar{F}_L^* \gamma_{\mu} F_L + \eta'_L \bar{F}_L \gamma_{\mu} F_L + \eta''_L \bar{F}_L^* \gamma_{\mu} F_L^* + h.c. + (L \to R)$$
with left-handed fermion currents.

• Total e^{*} production cross section is the sum of the cross sections σ_{GM+CI} • For simplicity, set f = +f' = 1, fixing the relative strength of the GM and CI components and use only GM e^{*} decays (> 95% of total here) C7.04.2009

Limits on f/Λ from q^* production

Limits at 95% C.L. on f/Λ from all channels combined

• $f = f', \Lambda = M_{q^*}$ • this limit is derived using $\gamma/Z/W$ decay channels of q^*

For $f_s < 0.1$ and for $M_{q^*} < 190$ GeV, the present analysis probes a domain not excluded by Tevatron experiments