

... for a brighter future







A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

# Measurements of Drell-Yan Angular Distributions and the Transverse Boer-Mulders Structure Function

Paul E. Reimer

Argonne National Laboratory

Representing the Fermilab E-866/NuSea collaboration

- Drell-Yan Angular Distributions and the Lam Tung Relation
- Pionic Drell-Yan Angular Distributions
- QCD Effects and the Boer-Mulders Distributions
- Proton Induced Drell-Yan: Fermilab E-866/NuSea



This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.





## Next-to-Leading Order Drell-Yan

- Next-to-leading order diagrams complicate the picture
- These diagrams are responsible for 50% of the measured cross section
- Intrinsic transverse momentum of quarks (although a small effect, λ > 0.8)







#### **Generalized Angular Distributions**

Chi-Sing Lam and Wu-Ki Tung—basic formula for lepton pair production angular distributions PRD 18 2447 (1978)

 $\frac{d\sigma}{d^4q \ d\Omega_k^*} = \frac{1}{2} \frac{1}{(2\pi)^4} \frac{\alpha^2}{(Ms)^2} \left[ W_T \left( 1 + \cos^2 \theta \right) + W_L \left( 1 - \cos^2 \theta \right) \right]$  $+W_{\Delta}\sin 2\theta\cos\phi + W_{\Delta\Delta}\sin^2\theta\cos 2\phi$ 

- Structure function formalism
  - Derived in analogy to DIS
  - Independent of Drell-Yan and parton "models"
  - Showed same relations follow as a general consequence of the quarkparton model







## Lam-Tung Relation PRD 21 2712 (1980)

#### Lam-Tung Relation

Direct analogy to the Callan-Gross relation in DIS

$$egin{aligned} rac{d\sigma}{d^4q} rac{d\Omega_k^*}{d\Omega_k^*} &= rac{1}{2} rac{1}{(2\pi)^4} rac{lpha^2}{(Ms)^2} \left[ W_T \left( 1 + \cos^2 heta 
ight) + W_L \left( 1 - \cos^2 heta 
ight) \ &+ W_\Delta \sin 2 heta \cos \phi + W_{\Delta\Delta} \sin^2 heta \cos 2\phi 
ight] \ &W_L = 2 W_{\Delta\Delta} \end{aligned}$$

Normally written as  $\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$   $1 - \lambda = 2\nu$ 

Unaffected by O(α<sub>s</sub>) (NLO) corrections
 NNLO [O(α<sub>s</sub><sup>2</sup>)] corrections also small Mirkes and Ohnemus, PRD 51 4891 (1995)



### What do the data say?

- Pionic Drell-Yan experiments
  - CERN NA10 Guanziroli *et al.* (NA10) ZPC **37** 545 (1988)
    - 140, 194 and 286 GeV  $\pi$  on tungsten
  - Fermilab E-615 Conway *et al.* PRD **39** 92 (1989)
    - 252 GeV  $\pi$  on tungsten

- Proton induced Drell-Yan
  - Fermilab E-866/NuSea
    - 800 GeV proton on proton and deuterium
    - Study d-bar/u-bar in proton





# NA10 Lam-Tung Relation vs. p<sub>T</sub>



Violation of Lam-Tung relation as p<sub>T</sub> increases in higher momentum data. Statistics poor in 140 GeV data.

- **Note:** Correlation between  $\lambda$  and  $\nu$  uncertainties not known.
- Since most data is at low p<sub>T</sub>, *on average* the Lam-Tung relationship holds







#### Pionic Data Fermilab E615



- Clear violation of Lam-Tung Relation vs. p<sub>T</sub>.
- Violation larger than NA10
- Significant non-zero v coefficient
  Shows other kinematic dependencies





## Summary so far

Lam-Tung Relation is theoretically robust



- - -Nuclear effects
  - -Higher-Twist effects from quark-antiquark binding in pion
  - -Factorization breaking QCD Vacuum
  - $-k_T$  dependent transverse momentum distribution (Boer Mulders  $h_1^{\perp}$ )



#### Nuclear Effect? Compare NA10 Deuterium and Tungsten









# **QCD Vacuum Effect**

Factorization breaking Brandenburg, Nachtmann and Mirkes, ZPC 60, 679 (1993).

- QCD Vacuum *may* correlate the spins and momenta of incoming partons
- Effect could be instanton-induced Boer, Brandenburg, Nachtmann, Utermann, EPJC 40 55 (2005), Brandenburg, Ringwald, Utermann NPB 754, 107 (2006).



Should be flavor blind and seen in both sea and valence distributions



#### **Boer-Mulders Structure Function**

Relates parton's transverse spin and transverse momentum  $(k_T)$  in an unpolarized nucleon. Presence in both quark and antiquark in  $\nu \propto h_{1,q(\text{beam})}^{\perp}(x_1)h_{1,\bar{q}(\text{target})}^{\perp}(x_2)$ 

ν

Presence in both quark and antiquark in annihilation could form correlation contributing to cos(2\$\oplus\$) distribution

$$h_1^{\perp}(x, k_T^2) = C_H \frac{\alpha_T}{\pi} \frac{1}{k_T^2 + M_C^2} e^{-\alpha_T k_T^2} f_1(x)$$
$$\nu = 16 \ C_1 C_2 \frac{p_T^2 M_C^2}{(2 + M_C^2)^2}$$

$$(p_T^2 + 4M_C^2)^2$$
  
 $M_c = 2.3 \pm 0.5 \text{ GeV}$   
 $16 C_1 C_2 = 7 \pm 2$ 



FIG. 4. Data from [3] at 194 GeV and fit [using Eq. (49)] to  $\nu = 2\kappa$  as a function of the transverse momentum  $Q_T$  of the lepton pair. The fitted parameters are  $M_C = 2.3 \pm 0.5$  GeV and  $16\kappa_1 = 7 \pm 2$ .



#### **Boer-Mulders Structure Function**

Lu and Ma—quark-spectator-antiquark model

$$h_{1\pi}^{\perp} = \frac{A_{\pi}(x)}{k_{\perp}^2 \{k_{\perp}^2 + B_{\pi}(x)\}} \ln \frac{k_{\perp}^2 + B_{\pi}(x)}{B_{\pi}(x)}$$

Fit all three NA10 energies







Higher-Twist effects from quark-antiquark binding in pion

- Factorization breaking QCD Vacuum Expect same effect for sea and valence

 $-k_T$  dependent transverse momentum distribution (Boer Mulders  $h_1^{\perp}$ ) Possible difference between valence and sea distributions







# **Dimuon Mass Distribution**

Spectrometer settings

Data used for cos2φ analysis:

High Mass:

data set 7-39k (+ polarity) data set 8-85k (+ polarity) data set 11-25k (- polarity)

Low Mass:

data set 5-68k (+ polarity)

 $\sqrt{s} = 38.8 \text{GeV}$ 





#### FNAL E866/NuSea Collaboration

#### Abilene Christian University

Donald Isenhower, Mike Sadler, Rusty Towell, Josh Bush, Josh Willis, Derek Wise

#### Argonne National Laboratory

Don Geesaman, Sheldon Kaufman, Naomi Makins, Bryon Mueller, Paul E. Reimer

Fermi National Accelerator Laboratory Chuck Brown, Bill Cooper

Georgia State University Gus Petitt, Xiao-chun He, **Bill Lee** 

Illinois Institute of Technology Dan Kaplan

Los Alamos National Laboratory Melynda Brooks, Tom Carey, Gerry Garvey, Dave Lee, Mike Leitch, Pat McGaughey, Joel Moss, Brent Park, Andrea Palounek, Walt Sondheim, Neil Thompson Louisiana State University Paul Kirk, Ying-Chao Wang, Zhi-Fu Wang

#### New Mexico State University

Mike Beddo, **Ting Chang**, Gary Kyle, Vassilios Papavassiliou, J. Seldon, **Jason Webb** 

#### Oak Ridge National Laboratory Terry Awes, Paul Stankus, Glenn Young

Texas A & M University

Carl Gagliardi, Bob Tribble, **Eric Hawker**, Maxim Vasiliev

> University of Illinois Jen-Chieh Peng, *Lingyan Zhu*

> > University of New Mexico Steve Klinksiek

Valparaiso University Don Koetke, Paul Nord







# *Kinematic Dependencies: v*

- v consistent with 0 or lightly positive
  - for almost all kinematics and
  - both targets







Proton induced Drell-Yan is sensitive only to sea antiquark structure of the target

- Possible valence vs. sea quark effect?
  - $h_{\perp}^1$  expected to be small for sea



#### **Extraction of Boer-Mulders function from pD Drell-Yan**

- Zhang, Lu, Ma, Schmidt, Phys.Rev.**D77**:054011,2008.
- Fit to E866 pD Drell-Yan v data in  $p_T$ ,  $x_1$  and  $x_2$
- Extract h<sup>1,q</sup>. (flavor separation)
- Predict v for pp Drell-Yan

$$h_1^{\perp,q}(x,p_{\perp}^2) = H_q x^c (1-x) e^{\left(-p_{\perp}^2/p_{BM}^2\right)} f_1^q(x)$$





#### Extraction of Boer-Mulders function from pD Drell-Yan

- Zhang, Lu, Ma, Schmidt, Phys.Rev.**D77**:054011,2008.
- Fit to E866 pD Drell-Yan v data in  $p_T$ ,  $x_1$  and  $x_2$
- Extract h<sup>1,q</sup>. (flavor separation)
- Predict v for pp Drell-Yan







#### Boer-Mulders and QCD in p induced Drell-Yan

0.3 ■  $v(pp) \approx v(pD)$ p + p at 800 GeV/c 0.25 **pp** data have a poor  $\chi^2$  in v p + d at 800 GeV/c  $-\chi^2/5 \text{ dof} = 3.5$ 0.2**QCD** effects in Drell-Yan 0.15 Berger et al PRD76,074006 (2007) and > 0.1 Boer et a. PRD77, 054011(2008) 0.05  $\nu = \frac{Q_{\perp}^2/Q^2}{1 + \frac{3}{2}Q_{\perp}^2/Q^2}$ 0 Zhu et al, (E-866/NuSea) PRL 99 082301,  $\vee$  v(pp) = v(pD) because of -0.05 (2007) arXiv:hep-ex/0609005 same kinematic coverage Zhu et al, (E-866/NuSea) arXiv:0811.4589 -0.1 0.5 2.5 3 3.5  $p_{T}$  (GeV/c)







## Conclusion

- Lam-Tung Relation provides a useful theoretical framework for studying QCD  $\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$
- Pionic Drell-Yan experiments see a violation which grows as a function of p<sub>T</sub>. (Esp. NA10)
- Most plausible explanation based on the  $v(p_T)$  dependence of the valence ( $\pi$ ) and sea (proton) data is the  $k_T$ -dependent Boer-Mulders TMD  $h^{\perp}_1$  along with QCD effects

This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.







#### E866: Data/MC comparison

- Blue: SimulationRed: Data
- For fit, each bin in p<sub>T</sub> was divided into
  - 5 bins in  $\cos\theta$
  - 8 bins in  $\phi$

■ |cosθ| < 0.5









## Soft Gluon Resummation Effects

Problem (a general problem for Drell-Yan):

- At any fixed order in  $\alpha_s$ , explicit calculations done in the parton model **Drell-Yan cross section diverges** as  $(1/Q_{\perp})^n$  or as  $ln(Q/Q_{\perp})$  due to soft and co-linear gluon emission

Solution:

– Resummation to all orders in  $\alpha_s$  provides expected angular-integrated results

• How does this affect the Lam-Tung relation?

- $\begin{array}{ll} \ W_{\rm T}, \ W_{\rm L}, \ W_{\Delta} \ \text{and} \ W_{\Delta\Delta} \\ are \ functions \ of \ Q_{T}. \end{array} & \frac{d\sigma}{d^4q \ d\Omega_k^*} & \propto & \left[ W_T \left( 1 + \cos^2 \theta \right) + W_L \left( 1 \cos^2 \theta \right) \\ & + W_\Delta \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi \right] \end{array}$
- Deviation from 1+cos<sup>2</sup> $\theta$  less than 5% Chiappatta, Bellac, ZPC 32, 521 (1986)
- Recently Berger, Qiu and Rodrigues-Pedraza showed that the Lam-Tung relation is preserved under resummation. arXiv:0707.3150, and PRD 76 074006 (2007)



# *Kinematic Dependencies: λ*







