Heavy Flavour Production in ATLAS

Deep-Inelastic Scattering 2009 Madrid, Spain April 29th, 2009

T. Stahl

University of Siegen, Germany on behalf of the ATLAS collaboration

GEFÖRDERT VOM

- Introduction
- Heavy flavour cross section measurements
 - → Open b-flavour production with B⁺ → J/ ψ (μ ⁺ μ ⁻) K⁺
 - Heavy quarkonia
- Polarization measurements
 - Heavy quarkonia
 - $\Lambda_b \rightarrow J/\psi(\mu^+\mu^-) \Lambda(p\pi^-)$
- Summary and conclusions

A B

Beauty Production at LHC

- **→** LHC
 - → p-p collisions at E_{cm}= 14 TeV @ 40 MHz
 - Design luminosity of 10³⁴ cm⁻²s⁻¹
 ~100 fb⁻¹ / year
 ('Early running': L = 10³¹–10³² cm⁻²s⁻¹)
 - → First collisions expected this autumn (E_{cm} = 10 TeV)
- Large b-production cross section
 - $\sigma(b\overline{b})$ ~ 500 μ barn @ 14 TeV
 - 10⁵ bb̄-pairs/s @ 10³³ cm⁻²s⁻¹
 - Huge statistics allows precision measurements of B hadron species

The ATLAS Detector at the LHC

- Fast trigger chambers: TGC, RPC (<10 ns time resolution)
- High resolution tracking detectors:
 CSC, MDT (40 μm spatial resolution)

Trigger System of ATLAS

40 MHz 2.5 μsec

75 kHz ~20 msec

2 kHz

~2 sec

~100 **–** 200 Hz

- Three stage system
 - Level 1: Hardware
 - High Level Trigger (Level 2 + EF): Software

Level 1

- Single- and di-muon (di-μ) trigger
- Identifies Regions of Interest (RoI) for further processing

Level 2

- Confirmation of Level 1 decision with higher precision
- Fast reconstruction using precision muon chambers and Inner Detector (ID) measurements, Rol based
- Event Filter (EF)
 - Refine Level 2 selection using offlinelike algorithms
 - Full event, alignment and calibration data available

Dedicated B-trigger developed

- Based on single- and di-μ signatures
- Rejection of muons from decays in flight, di-μ invariant mass cuts and vertex fit available

b Cross Section - Motivation

- **→** Extrapolation of $\sigma(b\overline{b})$ to 14 TeV with large uncertainties
 - Test of QCD calculations of heavy flavour production in pp-collisions at new energy
 - Large b-production rates allow sufficient statistics to cover wider p_⊤ range, as well as improve precision of bb-correlations
 - Needed to constrain uncertainties in NLO QCD calculations
 - Needs to be measured early, since bb-events are largest physics background in many studies
- Inclusive measurements planned for early running period using quarkonia
 - Probe different production models
- Exclusive channel B⁺ → J/ψ(μ⁺μ⁻) K⁺
 - Reference channel for e.g. rare B-decays, flavor tagging algorithms
 - Detector performance studies like Inner Detector calibration and alignment

$B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$

- Di-μ J/ψ trigger $(p_T(\mu_{12}) > 6 \text{ GeV}, 4 \text{ GeV})$
- Offline:
 - → J/ψ : $p_T(\mu_{12}) > 6$ GeV, 3 GeV, mass in ±120 MeV around m_{J/w}
 - B⁺: J/ψ + 1 track $(p_{\tau} > 1.5 \text{ GeV}, |\eta| < 2.5,$ impact parameter significance $|d_0|/\sigma(d_0) > 1$, $p_{\tau}(B^+) > 10 \text{ GeV}$
- Online and offline efficiency $\varepsilon^{\text{total}} = 29.8 \pm 0.8 \%$ $\sigma(m_{R^+}) = 42.2 \pm 1.3 \text{ MeV}$

→ With 10 pb⁻¹:

- ~ 1600 signal events
- Cross section (stat) (total)
 - ~3 % ~15 % Total to
 - \rightarrow d σ /d p_{τ} to ~10 % ~16-20 %
- Signal lifetime to ~ 2.5 % (stat only)
- Statistical precision ~1 % with 100 pb⁻¹

Karangan Heavy Prompt Quarkonia – Motivation

 $BR(J/\psi \rightarrow \mu^{+}\mu^{-})d\sigma(pp \rightarrow J/\psi + X)/dp_{\tau} [nb/GeV]$

CDF data require Color Octet
 Model contributions to describe J/ψ cross section

 Color Singlet (CSM) and Color Octet Model (COM) predictions from M.
 Kramer, Prog. Part. Nucl. Phys 47 (2001) 141.

COM prediction disagrees with polarization data in Y→μμ

Heavy Prompt Quarkonia

- Already with first data enough statistics to probe different production models
- Dedicated J/ψ and Y trigger signatures
- → Seeded by Level1 Di-µ trigger
 - μ tracks from primary vertex, pseudo-proper time < 0.2 ps (background suppression)
 - Mass windows: m_{J/ψ} PDG ± 300 MeV m_Y PDG ± 1 GeV
 - 17 000 J/ψ and 20 000 Y per 1 pb⁻¹ using di- μ trigger (p_T(μ_{12}) > 4 GeV)
 - S/B = 60 (J/ ψ), 10 (Y)

Expectation for 10 pb⁻¹ dσ/dp_T ~ 1 % level (J/ψ)
 5 % level (Y)

Samuel Offline Monitoring

- Search for mass shifts in m_{μμ} (J/ψ or Y)
 - vs. p_T:
 check muon momentum scale,
 energy loss corrections
 - vs. η and φ: check correct implementation of material effects, magnetic field uniformity and stability
 - vs. $1/p_T(\mu^+) 1/p_T(\mu^-)$: check detector misalignment

- → Data in low p_T region, complementary to Z boson sample
- Quarkonia decays will also be used for online monitoring (e.g. trigger efficiencies, detector calibration)

Polarization Measurements

- Complementary acceptances in cos θ* for single and di-muon trigger
 - Seeded by Level1 single-μ trigger
 - → Single- μ trigger (p_T(μ) > 10 GeV)
 - → Track in cone $\Delta R_{\mu\text{-track}} < 3$
 - μ and track from primary vertex
- Fit polarization α in bins of $\mathbf{p}_{\mathsf{T}} \alpha = (\sigma_T 2\sigma_L)/(\sigma_T + 2\sigma_L)$ $\frac{dN}{d\cos\theta^*} = C \frac{3}{2\alpha + 6} \left(1 + \alpha\cos^2\theta^*\right)$

- Precision in α of 0.02 0.06 (J/ ψ) and 0.2 (Y) with 10 pb⁻¹ in p_T of 10 50 GeV
 - J/ψ polarization to same precision as Tevatron with 1.3 fb⁻¹, but with interesting high p_T data
 - Same precision for Y polarization studies can be reached after

- Large polarizations have been observed in the inclusive Λ-Hyperons production at energies of several hundred GeV
 - Not known if due to unexplained effects of existing physics or pointing to New Physics
 - Possibility to clarify production mechanism of polarized b-quarks with $\Lambda_{\rm b}$ polarization measurements
- Parity violating parameter α_{λ_b} tests various heavy quark factorization models and pertubative QCD $\alpha_{\Lambda_b} = \frac{|a_+|^2 |a_-|^2 + |b_+|^2 |b_-|^2}{|a_+|^2 + |a_-|^2 + |b_+|^2 + |b_-|^2}$

$$a_{+} = H_{1/2,0}, \ a_{-} = H_{-1/2,0}, \ b_{+} = H_{-1/2,1}, \ b_{-} = H_{1/2,-1}$$

where $H_{\lambda_{\Lambda},\lambda_{J/\psi}}$ are helicity amplitudes of the decay $\Lambda_{\rm h} \rightarrow \Lambda J/\psi$

$\Lambda_b \wedge \Lambda_b \wedge \Lambda_b$

- Seeded by LVL1 di-μ trigger:
 (p_T(μ_{1,2}) > 4 GeV)
 - J/ψ: muon tracks from same vertex, and mass within 2.8 3.4 GeV
 - Λ: two tracks from same vertex (p_T(p)>p_T(π)), mass within
 1.105 1.128 GeV,
 60 % decay @ r < 40 cm (for r > 40cm efficiency vanishes insufficient number of silicon layer hits)
 - Λ_b : common vertex, proper decay length $d_T > 200 \mu m$, mass within 5.1 6.1 GeV
- Combined trigger and selection efficiency

 £^{total} = 5.4 %

→ ~13 500 $\Lambda_{\rm b}$ events for 30 fb⁻¹

$\Lambda_{\rm b}$ Polarization with $\Lambda_{\rm b} \rightarrow J/\psi(\mu^{+}\mu^{-}) \Lambda(p\pi^{-})$

Λ_b polarization (P) determined simultaneously with 6 parameters of helicity amplitudes H<sub>λ_Λ,λ_{J/w}
</sub>

Polarization and asymmetry parameter α_{Λ_b} can be determined with precision of a few percent, with correlation varying (0 – 60%) depending on the value of P

Summary and Conclusions

- ATLAS will measure beauty and quarkonia production cross sections
 - Tillizing B⁺ → J/ψ(μ⁺μ⁻) K⁺ and with 10 pb⁻¹, the total cross section can be measured to an accuracy of ~ 15 % and dσ/dp_⊤ to 16 20 %
 - J/ψ and Y properties may be used for online- and offline-monitoring of detector performance
- → J/ψ and Y polarization
 - Precision in α of 0.02 0.06 (J/ ψ) and 0.2 (Y) with 10 pb⁻¹
 - → Tevatron precision (@ 1.3 fb⁻¹) reached with 10 pb⁻¹ (J/ ψ) and 100 pb⁻¹ (Y)
 - Extending polarization measurements to interesting high p_⊤ region
- Λ_b polarization as well as asymmetry parameter α_{Λ_b} determination to a few percent accuracy possible with 30 fb⁻¹
 - → Correlation varying (0 60%) depending on the value of polarization
- Looking forward to first LHC data