e+A physics at a future Electron-Ion Collider

Outline

- What is the nature of gluonic fields?
- Non-linear QCD and Saturation physics
 - Nuclear Enhancement Factor

- The 4 key gluon measurements in e+A
 - Momentum distributions
 - Space-time distributions
 - The role of the Pomeron
 - Energy loss in cold nuclear matter
 - Universality at small-x

Matthew A. C. Lamont Brookhaven National Lab What do we know about gluons? Gluons and the QCD Lagrangian: $L_{QCD} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\bar{q}\gamma^{\mu}T_{a}q)A^{a}_{\mu} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$

- Despite the success of QCD, our knowledge of glue is very limited. We know:
- Mediators of the strong interaction
- Determine essential features of QCD
- Asymptotic freedom from gluon loops
- Dominate structure of QCD vacuum (χSB)
- L_{QCD} gets hadron masses correct to ~ 10%

Action (~energy) density fluctuations of gluonfields in QCD vacuum (2.4 ×2.4× 3.6 fm) (Derek Leinweber)

Gluons and the Lagrangian

- Hard to "see" gluons in the low-energy world
 - Gluon degrees of freedom "missing" in hadronic spectrum
 - Constituent Quark Picture?
- From DIS:
 - Drive the structure of baryonic matter already at medium-x
- Crucial players at RHIC and the LHC
 - Drive the entropy

ud π

 D^0

รนิ

 π du

cū

ds π^0

 $d\overline{c}$ $u\overline{c}$ \overline{D}^0

Gluons and the Lagrangian

- Hard to "see" gluons in the low-energy world
 - Gluon degrees of freedom "missing" in hadronic spectrum
 - Constituent Quark Picture?
- From DIS:
 - Drive the structure of baryonic matter already at medium-x
- Crucial players at RHIC and the LHC
 - Drive the entropy

 D^0

รนิ

 π du

cū

 $d\overline{s} \pi^0$

dē

[Cd]

ud >

 $\mathbf{P}_{\mathcal{T}}$

Gluons and the Lagrangian

- Hard to "see" gluons in the low-energy world
 - Gluon degrees of freedom "missing" in hadronic spectrum
 - Constituent Quark Picture?
- From DIS:
 - Drive the structure of baryonic matter already at medium-x
- Crucial players at RHIC and the LHC
 - Drive the entropy

<u>Eskola, Paukkonen, Salgado: arXiv0902.4154</u>

 D^0

รนิ

 π du

cū

ds π^0

Cd

ud

 $lackstrian \mathcal{T}$

The problem with our current understanding

- Using the Linear DGLAP evolution model:
 - Weird behaviour of xG at low-x and low-Q² in HERA data
 - xG goes negative
 - xG < xS (even though sea quarks come from gluon splitting)

The problem with our current understanding

- Using the Linear DGLAP evolution model:
 - Weird behaviour of xG at low-x and low-Q² in HERA data
 - xG goes negative
 - xG < xS (even though sea quarks come from gluon splitting)
- More Severe:
- Linear evolution has a built-in high energy "catastrophe"
- xG has a rapid rise with decreasing x (and increasing Q²) ⇒ violation of Froissart unitarity bound
 - Must have saturation !!

Using the Linear DGLAP evolution model: Weird behaviour of xG at low-x and low-Q² in HERA data

The problem with our current understanding

- xG goes negative
- xG < xS (even though sea quarks come from gluon splitting)
- More Severe:

NATIONAL LABORATORY

- Linear evolution has a built-in high energy "catastrophe"
- xG has a rapid rise with decreasing x (and increasing Q²) ⇒ violation of Froissart unitarity bound
 - Must have saturation !!
- What is the underlying dynamics?

Non-linear QCD and Saturation

- BFKL evolution in x:
 - linear

- explosion in colour field at small-x

Non-linear QCD and Saturation

- BFKL evolution in x:
 - linear
 - explosion in colour field at small-x
- Non-linear JIMWLK/BK equations:
 - non-linearity \Rightarrow saturation
 - characterised by the saturation scale, Q_S(x,A)
 - arises naturally in the Colour-Glass Condensate EFT

- Enhancing Saturation effects:
 - Probes interact over distances $L \sim (2m_n x)^{-1}$
 - For probes where $L > 2R_A$ (~ $A^{1/3}$), cannot distinguish between nucleons in front or back of the nucleus.
 - Probe interacts coherently with all nucleons.
 - Probes with transverse resolution $1/Q^2$ (<< Λ^2_{QCD}) ~ 1 fm² will see large colour charge fluctuations.
 - This kick experienced in a random walk is the resolution scale.

Simple geometric considerations lead to:

$$Q_S^2 \propto rac{lpha_s x G(x,Q_S^2)}{\pi R_A^2}$$
 HERA: $xG \propto rac{1}{x^{1/3}}$ A dependence: $xG_A \propto A$

Nuclear Enhancement Factor: $(Q_S^A)^2 \approx cQ_0^2 (\frac{A}{r})^{1/3}$

Simple geometric considerations lead to:

$$Q_S^2 \propto rac{lpha_s x G(x,Q_S^2)}{\pi R_A^2}$$
 HERA: $xG \propto rac{1}{x^{1/3}}$ A dependence: $xG_A \propto A$

Nuclear Enhancement Factor: $(Q_S^A)^2 \approx cQ_0^2 (\frac{A}{x})^{1/3}$

Enhancement of Q_S with A: \Rightarrow non-linear QCD regime reached at significantly lower energy in e+A than in e+p

More sophisticated analyses \Rightarrow confirm (exceed) pocket formula for high A

e.g. Kowalski, Lappi and Venugopalan, PRL 100, 022303 (2008); Armesto et al., PRL 94:022002; Kowalski, Teaney, PRD 68:114005

More sophisticated analyses ⇒ confirm (exceed) pocket formula for high A

e.g. Kowalski, Lappi and Venugopalan, PRL 100, 022303 (2008); Armesto et al., PRL 94:022002; Kowalski, Teaney, PRD 68:114005

4 Key Measurements in e+A Physics

- Momentum distribution of gluons in nuclei?
 - Extract via scaling violation in F₂: $\partial F_2 / \partial ln Q^2$
 - Direct Measurement: $F_L \sim xG(x,Q^2)$ requires \sqrt{s} scan
 - Inelastic vector meson production (e.g. J/ Ψ , ρ)
 - Diffractive vector meson production (~ $[xG(x,Q^2)]^2$)
 - 2+1 jet rates

Gluon momemtum distributions: i) F₂ scaling violation

Gluon momentum distributions: ii) F_L measured directly

$$\frac{d^{2}\sigma^{ep \to eX}}{dxdQ^{2}} = \frac{4\pi\alpha_{e.m.}^{2}}{xQ^{4}} \left[\left(1 - y + \frac{y^{2}}{2} \right) F_{2}(x,Q^{2}) - \frac{y^{2}}{2} F_{L}(x,Q^{2}) \right]$$
F_L ~ $\alpha_{s} \times G(x,Q^{2})$
requires $\sqrt{s} \operatorname{scan}, Q^{2}/xs = y$

$$\begin{cases} \frac{1}{\sqrt{s}} + \frac{1}{\sqrt{$$

DIS 2009: macl@bnl.gov

В

NATIONAL LABORATORY

Gluon momentum distributions: ii) F_L measured directly

$$\frac{d^2 \sigma^{ep \to eX}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

 $F_L \sim \alpha_s x G(x,Q^2)$ requires $\sqrt{s} scan$, $Q^2/xs = y$

Here: $\int Ldt = 4/A \text{ fb}^{-1} (10+100) \text{ GeV}$ $= 4/A \text{ fb}^{-1} (10+50) \text{ GeV}$ $= 2/A \text{ fb}^{-1} (5+50) \text{ GeV}$

statistical error only

Syst. studies of $F_L(A,x,Q^2)$:

- $xG(x,Q^2)$ with great precision
- Distinguish between models

HKM and FGS are "standard" shadowing parameterizations that are evolved with DGLAP

4 Key Measurements in e+A Physics

- Momentum distribution of gluons in nuclei?
 - Extract via scaling violation in F₂: $\partial F_2 / \partial ln Q^2$
 - Direct Measurement: $F_L \sim xG(x,Q^2)$ requires \sqrt{s} scan
 - Inelastic vector meson production (e.g. J/ Ψ , ρ)
 - Diffractive vector meson production (~ $[xG(x,Q^2)]^2$)
 - 2+1 jet rates
- Space-time distribution of gluons in nuclei?
 - Exclusive final states (e.g. ρ , J, Ψ)
 - Deep Virtual Compton Scattering (DVCS) $\sigma \sim A^{4/3}$
 - F₂, F_L for various impact parameters

4 Key Measurements in e+A Physics

- Momentum distribution of gluons in nuclei?
 - Extract via scaling violation in F₂: $\partial F_2 / \partial ln Q^2$
 - Direct Measurement: $F_L \sim xG(x,Q^2)$ requires \sqrt{s} scan
 - Inelastic vector meson production (e.g. J/ Ψ , ρ)
 - Diffractive vector meson production (~ $[xG(x,Q^2)]^2$)
 - 2+1 jet rates
- Space-time distribution of gluons in nuclei?
 - Exclusive final states (e.g. ρ , J, Ψ)
 - Deep Virtual Compton Scattering (DVCS) $\sigma \sim A^{4/3}$
 - F₂, F_L for various impact parameters
- Role of colour-neutral (Pomeron) excitations?
 - Diffractive vector meson production (~ $[xG(x,Q^2)]^2$)
 - Diffractive cross-section: $\sigma_{diff}/\sigma_{tot}$ (~ 10%: HERA e+p; 30%? EIC e+A?)

 M_{X}

 $rac{d\sigma}{dt}$ $|_{t=0}(\gamma^*A \to M_XA) \propto \alpha^2 [G_A(x,Q^2)]^2$

Curves: Kugeratski, Goncalves, Navarra, EPJ C46, 413

- HERA/ep: 15% of all events are hard diffractive
- Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ in *e*+A?
 - Predictions: ~25-40%?

 M_X

gap

 $\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to M_XA) \propto \alpha^2 [G_A(x,Q^2)]^2$

Curves: Kugeratski, Goncalves, Navarra, EPJ C46, 413

- HERA/ep: 15% of all events are hard diffractive
- Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ in e+A?
 - Predictions: ~25-40%?
- Look inside the "Pomeron"
 - Diffractive structure functions

 $d\sigma$ $\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to M_XA) \propto \alpha^2 [G_A(x,Q^2)]^2$

 $e (\mathbf{k}_{\mu})$ θ_{e} $e (\mathbf{k}_{\mu}')$ θ_{e} $\gamma^{*} (\mathbf{q}_{\mu})$ $\mathbf{X} (\mathbf{p}_{\mu}')$

- HERA/ep: 15% of all events are hard diffractive
- Diffractive cross-section $\sigma_{diff}/\sigma_{tot}$ in *e*+A?
 - Predictions: ~25-40%?
- Look inside the "Pomeron"
 - Diffractive structure functions
- Distinguish between linear evolution and saturation models

Curves: Kugeratski, Goncalves, Navarra, EPJ C46, 413

How to measure coherent diffraction in e+A?

 $\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to M_XA) \propto \alpha^2 [G_A(x,Q^2)]^2$

How to measure coherent diffraction in e+A?

$$\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to M_XA) \propto \alpha^2 [G_A(x,Q^2)]^2$$

- Coherent diffraction == low t
- Can measure the nucleus if it is separated from the beam in Si (Roman Pot) "beamline" detectors
 - $p_T^{min} \sim pA\theta_{min}$
 - For beam energies = 100 GeV/n and $\theta_{min} = 0.08$ mrad:
- These are large momentum kicks, >> the binding energy (~ 8 MeV)

species (A)	рт ^{min} (GeV/c)
d (2)	0.02
Si (28)	0.22
Cu (64)	0.5 I
In (115)	0.92
Au (197)	I.58
U (238)	1.90

How to measure coherent diffraction in e+A?

$$\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to M_XA) \propto \alpha^2 [G_A(x,Q^2)]^2$$

- Coherent diffraction == low t
- Can measure the nucleus if it is separated from the beam in Si (Roman Pot) "beamline" detectors
 - $p_T^{min} \sim pA\theta_{min}$
 - For beam energies = 100 GeV/n and $\theta_{min} = 0.08$ mrad:
- These are large momentum kicks, >> the binding energy (~ 8 MeV)

species (A)	рт ^{min} (GeV/c)
d (2)	0.02
Si (28)	0.22
Cu (64)	0.5 I
In (115)	0.92
Au (197)	1.58
U (238)	1.90

For large A, nucleus cannot be separated from beam without breaking up

Method used at HERA: Large Rapidity Gap Method:

In diffractive events, a large gap in rapidity occurs between outgoing p and final state particles

activity in the proton direction

Method used at HERA: Large Rapidity Gap Method:

In diffractive events, a large gap in rapidity occurs between outgoing p and final state particles

activity in the proton direction

Method used at HERA: Large Rapidity Gap Method:

In diffractive events, a large gap in rapidity occurs between outgoing p and final state particles

- At HERA: $\Delta \eta \sim 7 \Rightarrow$ hadronization reduces this to ~ 2.5
- Pros
- Lots of statistics
- Cons
 - Sensitive to hadronization models
 - No information on t

DIS 2009: macl@bnl.gov

events

Method used at HERA: Large Rapidity Gap Method:

In diffractive events, a large gap in rapidity occurs between outgoing p and final state particles

- At HERA: $\Delta \eta \sim 7 \Rightarrow$ hadronization reduces this to ~ 2.5
- Pros

events

- Lots of statistics
- Cons
 - Sensitive to hadronization models
 - No information on t

Can this method be used at an EIC?

• Method:

- Use RAPGAP in diffractive and DIS modes to simulate e+p collisions at EIC energies
- Clear difference between DIS and Diffractive modes in "most forward particle in event" distributions
 - Little change in distributions with increasing energy

• Method:

- Use RAPGAP in diffractive and DIS modes to simulate e+p collisions at EIC energies
- Clear difference between DIS and Diffractive modes in "most forward particle in event" distributions
 - Little change in distributions with increasing energy
- Can reproduce "ZEUS-like" plots

4 Key Measurements in e+A Physics

- Momentum distribution of gluons in nuclei?
 - Extract via scaling violation in F₂: $\partial F_2 / \partial ln Q^2$
 - Direct Measurement: $F_L \sim xG(x,Q^2)$ requires \sqrt{s} scan
 - Inelastic vector meson production (e.g. J/ Ψ , ρ)
 - Diffractive vector meson production (~ $[xG(x,Q^2)]^2$)
 - 2+1 jet rates
- Space-time distribution of gluons in nuclei?
 - Exclusive final states (e.g. ρ , J, Ψ)
 - Deep Virtual Compton Scattering (DVCS) $\sigma \sim A^{4/3}$
 - F₂, F_L for various impact parameters
- Role of colour-neutral (Pomeron) excitations?
 - Diffractive vector meson production (~ $[xG(x,Q^2)]^2$)
 - Diffractive cross-section: $\sigma_{diff}/\sigma_{tot}$ (~ 10%: HERA e+p; 30%? EIC e+A?)
- Interaction of fast probes with gluonic medium?
 - Hadronization, Fragmentation
 - Energy loss (charm!!)

RHIC Au+Au @ 200 GeV/n

RHIC Au+Au @ 200 GeV/n

RHIC Au+Au @ 200 GeV/n

• nDIS:

- Clean measurement in 'cold' nuclear matter
- Suppression of high-p_T hadrons analogous to, but weaker than at RHIC

RHIC Au+Au @ 200 GeV/n

• nDIS:

- Clean measurement in 'cold' nuclear matter
- Suppression of high-p_T hadrons analogous to, but weaker than at RHIC

- Fundamental question:
 - When do partons get colour neutralized?

Parton energy loss vs. (pre)hadron absorption

• nDIS:

- Clean measurement in 'cold' nuclear matter
- Suppression of high-p_T hadrons analogous to, but weaker than at RHIC

• When do partons get colour neutralized?

Parton energy loss vs. (pre)hadron absorption

Energy transfer in lab rest frame: EIC: 10 < v < 1600 GeV HERMES: 2-25 GeV EIC: can measure *heavy flavour* energy loss

Charm measurements at an EIC

Charm also suppressed at RHIC - above and beyond model predictions

- EIC: allows multi-differential measurements of heavy flavour
- Covers and extends energy range of SLAC, EMC, HERA, and JLAB allowing for the study of wide range of formation lengths

EW Unification at HERA

• From DIS at HERA:

- At small-medium Q², $\sigma(NC) \gg \sigma(CC)$
- For $Q^2 > M_Z^2$ and M_W^2 , $\sigma(NC) \sim \sigma(CC)$
 - EW Unification
- Already a textbook figure ...

Matter at low-x: A truly universal regime? What about on the parton scale?

A.H. Mueller, hep-ph/0301109

- Small-x running-coupling BFKL QCD evolution predicts:
 - Qs approaches universal behaviour for all hadrons and nuclei
 - No dependence on A!!
 - Not only functional form f(Qs) universal, but even Qs itself becomes universal
- Nuclei and all hadrons have a component of their wave function with the *same* behaviour
- This is a conjecture! Needs to be tested

Summary

- The study of e+A collisions at an EIC allow us to explore the physics of Strong Colour Fields and the nature of nonlinear QCD and saturation. We can address the questions:
 - What are the momentum distributions of gluons in nuclei?
 - Measure F₂, F_L distributions
 - What are the space-time distributions of gluons in nuclei?
 - Vector meson survival probability
 - What is the role of colour-neutral excitations (Pomerons)?
 - Diffractive physics
 - How do fast partons interact with cold nuclear matter?
 - Measure energy loss of fast-moving hadrons
 - Is the saturation scale also universal at low-x?

BACKUP

Gluon space-time distributions

- In the "colour dipole" picture:
 - virtual photon fluctuates into a qq-bar dipole and scatters coherently on the nucleus
 - calculate the survival probability of qq-bar pair to propogate through the target without interacting
 - Calculate by measuring the vector meson cross-section
 - $pQCD \Rightarrow survival \sim 1$
 - dipole models $\Rightarrow \sim x5$ smaller
 - HERA data limited on this
 - b profile of nuclei more uniform

- Efficiency vs Purity:
 - Efficiency = fraction of diffractive events out of all diffractive events in sample
 - Purity = fraction of diffractive events out of all events in sample
 - Possible to place a cut to have both high efficiency and high purity
 - However, reduce the acceptance by 1 or 2 units of rapidity and these values drop significantly
 - Need hermetic detector coverage!!

- Efficiency vs Purity:
 - Efficiency = fraction of diffractive events out of all diffractive events in sample
 - Purity = fraction of diffractive events out of all events in sample
 - Possible to place a cut to have both high efficiency and high purity
 - However, reduce the acceptance by 1 or 2 units of rapidity and these values drop significantly
 - Need hermetic detector coverage!!

- Efficiency vs Purity:
 - Efficiency = fraction of diffractive events out of all diffractive events in sample
 - Purity = fraction of diffractive events out of all events in sample
 - Possible to place a cut to have both high efficiency and high purity
 - However, reduce the acceptance by 1 or 2 units of rapidity and these values drop significantly
 - Need hermetic detector coverage!!

$$\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_s^2 [G_A(x,Q^2)]^2$$

- Knowledge of t is important
 - small $t \Rightarrow$ coherent diffraction
 - large $t \Rightarrow$ incoherent diffraction
 - Results from STAR UPC Au+Au collisions
 - coherent diffraction \Rightarrow t < 0.03 GeV²
 - incoherent diffraction $\Rightarrow t > 0.03$ GeV²

STAR Ultra-Peripheral Au+Au Collisions: Phys. Rev. C 77 (2008) 34910

On the parton scale: Geometric scaling of $\sigma_{DIS}(x, Q^2)$

- Although saturation is reached only when $Q_S \sim Q$, observables are sensitive to the saturation scale as they approach saturation.
- Crucial consequence of non-linear evolution towards saturation:
 - Physics invariant along lines of constant gluon density (parallel to saturation regime)

On the parton scale: Geometric scaling of $\sigma_{DIS}(x, Q^2)$

- Although saturation is reached only when $Q_S \sim Q$, observables are sensitive to the saturation scale as they approach saturation.
- Crucial consequence of non-linear evolution towards saturation:
 - Physics invariant along lines of constant gluon density (parallel to saturation regime)
- For inclusive events in DIS, this manifests itself in "Geometric Scaling"
 - Total cross-section scales with $Q^2/Q^2_s(x)$ instead of x and Q^2/Q^2_0 separately

