Higher-order soft corrections to $t\bar{t}$ -production

Ulrich Langenfeld

in collaboration with S. Moch and P. Uwer

DESY Zeuthen

DIS 2009, 26 - 30 April 2009, Madrid

The Top Quark

• Mass of the top quark:

$$m_t = 173.1 \pm 0.6 \text{ (stat.)} \pm 1.1 \text{ (syst.)} \text{GeV}$$

[Tevatron Electroweak Working Group and CDF Collaboration and D0 Collab], arXiv:0903.2503 [hep-ex].

- Production mechanisms on the partonic level: $gg \to t\bar{t}, q\bar{q} \to t\bar{t}$ @ all orders, $gq \to t\bar{t}$ @ N^kLO, $k \ge 1$
- Measured pair production cross section at the Tevatron:

$$\sigma(p\bar{p} \rightarrow t\bar{t}) = 7.0 \pm 0.3 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.4 \text{ (lumi.)} \text{ pb}$$

A. Lister [CDF and D0 Collaborations], arXiv:0810.3350 [hep-ex].

Theoretical Ingredients

• The hadronic cross section:

$$\sigma_{pp \to t\bar{t}X}(S, m_t, \mu) = \sum_{i,j=q,\bar{q},g} \int\limits_{4m_t^2}^S ds \ L_{ij}(s, S, \mu_f^2) \ \hat{\sigma}_{ij}(s, m_t, \mu_r, \mu_f)$$

where *S* is the hadronic cms energy and *L* the parton luminosity

- Theory results on σ̂:
 - LO and NLO scaling functions well known since long, see f. e.
 P. Nason, S. Dawson and R. K. Ellis, Nucl. Phys. B 303 (1988) 607.
 W. Beenakker, H. Kuijf, W. L. van Neerven and J. Smith, Phys. Rev. D 40 (1989) 54.
 W. Bernreuther, A. Brandenburg, Z. G. Si and P. Uwer, Nucl. Phys. B 690 (2004) 81 [arXiv:hep-ph/0403035].
 - new since DIS 2008: NNLO approx. cross section
 S. Moch and P. Uwer, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476 [hep-ph]].
 N. Kidonakis and R. Vogt, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844 [hep-ph]].

NLO + NLL cross section

M. Cacciari, S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, JHEP **0809** (2008) 127 [arXiv:0804.2800 [hep-ph]].

Theoretical Ingredients: Scale dependence

- \bullet μ_r , μ_f : renormalisation and factorisation scale: arbitrary parameters
- μ_f : separates long and short distant interactions short distant interactions can be described bei pQCD, because α_s is small at high energies, long distant interactions are absorbed into the parton distribution functions (PDF)
- μ_r : "Expansion parameter" of the perturbation series
- use scale dependence of the cross section to estimate the theoretical uncertainty

common choice: $\frac{1}{2}m_q \le \mu_r = \mu_f \le 2m_q$

Theoretical Ingredients: Scale dependence

- at infinite order, scale dependence vanishes: → renormalizsation group equation (RGE)
- use RGE to calculate the scale dependent terms
- Example: For the $gg/q\bar{q}$ channel at NLO, these terms are given by

$$\sigma^{\text{NLO}}_{gg/q\bar{q}} = \textit{P}^{\text{LO}}_{gg/q\bar{q}} \otimes \sigma^{\text{LO}}_{gg/q\bar{q}} - \beta_0 \sigma^{\text{LO}}_{gg/q\bar{q}}$$

- $P_{gg/q\bar{q}}^{\rm LO}$: splitting functions, govern the scale evolution of the PDFs and are calculable functions
- NLO scale dependent terms are expressed in terms of LO functions

Theoretical Ingredients NNLO cross section

The partonic, NNLO approx cross section:

$$\hat{\sigma}_{ij}(s, m_t, \mu) = \frac{\alpha_s^2}{m_t^2} \left[f_{ij}^{(00)} + 4\pi\alpha_s \left(f_{ij}^{(10)} + f_{ij}^{(11)} \log(\frac{\mu^2}{m_t^2}) \right) + (4\pi\alpha_s)^2 \left(f_{ij}^{(20)} + f_{ij}^{(21)} \log(\frac{\mu^2}{m_t^2}) + f_{ij}^{(22)} \log^2(\frac{\mu^2}{m_t^2}) \right) \right]$$

with $ij = q\bar{q}$, gg, gq and s the partonic center of mass (cms) energy

- Renormalization Group Equation: → scale dependent scaling functions
- Fits on $f_{gg/qq}^{(10)}$ from the (new since DIS 2008) analytic NLO result and on the numerically calculable scaling functions $f^{(21)}$, $f^{(22)}$
 - M. Czakon and A. Mitov, arXiv:0811.4119 [hep-ph]
 - → Easier handling of the scaling functions, faster computations. Provide Fortran code.
- Resummation: \rightarrow Estimate of the NNLO contribution at the production threshold $\rightarrow f^{(20)}$

Scale dependence of the $t\bar{t}$ production cross section

Contour lines of the total hadronic cross section for top pair production in the μ_f - μ_r - plane in pb (log₁₀ - scale)

Scale dependence of the $t\bar{t}$ production cross section, cont'd

- Maximal deviation from the cros section at $\mu_f = \mu_r = m_t$ and for $1/2m_t \le \mu_{f/r} \le 2m_t$:
 - -5% at the Tevatron, -3.5% at the LHC
 - ⇒ Very mild scale dependence at NNLO
- At the Tevatron: cross section maximal at $\mu_f = \mu_r = 1/2m_t$ and minimal at $\mu_f = \mu_r = 2m_t$
- At the LHC: cross section minimal at $\mu_f = \mu_r = 2m_t$
- Total cross section prediction for $m_t = 173\,\text{GeV}$ and PDF set Cteq6.6:

$$\sigma(p\bar{p} \to t\bar{t}) = 7.34^{+0.23}_{-0.38} \, \text{pb} \, \, @ \, \, \text{Tevatron}$$

$$\sigma(pp \rightarrow t\bar{t}) = 874^{+14}_{-33} \, \mathrm{pb}$$
 @ LHC 14 TeV

Mass dependence

- Fairly strong mass dependence
- Fit functions for different scenarios:

$$\sigma(m_t) = a + bx + cx^2 + dx^3 + ex^4 + fx^5 + gx^6$$
, $x = (m_t/\text{GeV} - 173)$.

PDF error

- Define PDF error $\Delta O = \frac{1}{2} \left(\sum_{i=1}^{n_{\text{PDF}}} (O_{i+} O_{i-})^2 \right)^{1/2}$.
- upper and lower total error bound: $\sigma(\mu = 1/2m_t) + \Delta O$, $\sigma(\mu = 2m_t) \Delta O$
- Total cross section with combined theoretical and PDF error:

$$\sigma(p\bar{p} \rightarrow t\bar{t}) = 7.34^{+0.66}_{-0.76} \, \mathrm{pb}$$
 @ Tevatron

$$\sigma(pp \rightarrow t\bar{t}) = 874^{+26}_{-50}\,\mathrm{pb}$$
 @ LHC 14 TeV

Summary

We calculated

- the top pair production cross section at the LHC and the Tevatron with the full factorisation and renormalisation scale dependence.
- the total cross section as a function of the top mass and produced fit functions for different scales and PDF sets for both colliders
- the PDF uncertainty and presented a combined (theoretical and PDF) total error on the top pair production cross section.