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Fermilab Tevatron Collider

2Christina Mesropian DIS 2009

pp collider

Run I (1992-1996) 

s=1.8 TeV (~120 pb-1)

Run II (2001- )

 s= 1.96 TeV

Collider Run II Integrated Luminosity

6 fb-1 

_

Tevatron

Main Injector



CDF II Detectors
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RPS       – Roman Pot Spectrometers  0.02 < < 0.1 

0 < |t| < 2 GeV2

BSC       – Beam Shower Counters       5.4 < h< 7.4

MPCAL – MiniPlug Calorimeters       3.5 < h< 5.1

CCAL, PCAL   – Calorimeters                 |h< 3.6 

Tracking       – Tracking Detectors          |h< 2.0



Introduction
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Diffractive reactions at hadron colliders are defined as  reactions in 

which no quantum numbers are exchanged between colliding particles

Results discussed in 

“Exclusive  Production with Rapidity Gaps at CDF”
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gg, cc
}



Kinematics of Diffractive Events
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Selection of Diffractive Events 

 CDF Roman Pots 

acceptance ~80% for

0.03<pbar<0.10, |tpbar|<1 GeV2

 by presence of rapidity gap



Diffractive Structure Function
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Study the diffractive structure function
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Diffractive dijet cross section 

~10

Experimentally determine

diffractive structure function

CDF Run I results



CDF

H1 2002 QCD Fit (Prel.)

QCD fit to ZEUS 97 data



Methods and Challenges
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 Determine   using  Roman Pots tracking

 Also can determine   from ET in calorimeters 

Main challenge: multiple interactions spoiling diffractive signatures

use cal < 0.1 to reject overlap events  non-diffractive contributions

h  e
towers s

Ecal T

important to have MiniPlugs 



Diffractive Structure Function
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No significant Q2 dependence 

for 100 < Q2 < 10000 GeV2

 Pomeron evolves like proton

100 GeV jets

Confirms Run I results



Diffractive t Distribution
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Fit to double exponential function:
d/dt  0.9 eb1 t + 0.1 eb2 t 

 no diffractive dips

 no Q2 dependence in slope from 

inclusive to Q2 ~ 104 GeV2

Work in progress:

 high |t| range

 absolute |t|-slope values



Diffractive W/Z Production 
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Diffractive W/Z production probes the quark content of the Pomeron

 to Leading Order

the W/Z are produced 

by a quark in the Pomeron

 production by gluons is 

suppressed by a factor 

of aS

and can be distinguished by 

an associated jet



Diffractive W production – Run I
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Run I studies used rapidity gaps instead of 

Roman-Pots

•CDF Phys Rev Lett 78, 2698 (1997)

– Fraction of W events due to SD 

[1.15±0.51(stat) ± 0.20(syst) ]%

•DØ Phys Lett B 574, 169 (2003)

– Fraction of events with rapidity gap 

(uncorrected for gap survival)

–W: [0.89+0.19-0.17]%

– Z: [1.44+0.61-0.52]%



Diffractive W Production – Run II
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Identify diffractive events using Roman 

Pots:
accurate event-by-event ξ measurement

no gap acceptance correction needed

can still calculate ξcal

In W production, the difference between ξcal and 

ξRP is related to missing ET and  ην

allows to determine:

neutrino and W kinematics

xbj

h  e
towers

s

Ecal T

h 
 e

s

EcalRP T

reconstructed diffractive W mass



Diffractive W Production: measurement
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Fraction of diffractive W

RW (0.03<<0.10, |t|<1)= [0.97 ±0.05(stat) ±0.11(syst)]%

consistent with Run I result, extrapolated to all 

 cal < RP requirement 

removes most events 

with multiple pbar-p interactions

 50 < MW < 120 GeV/c2 requirement

on the reconstructed W mass cleans up

possiblemis-reconstructed events



W→e Kinematics
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missing ET, 

MT of  W, 

electron ET 

}similar  for 

SD and ND

electrons are boosted 

away from 

anti-protons in 

diffractive  sample








Diffractive Z Production
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estimate 11 overlap ND+SD background events 

based on  ND cal distribution

Fraction of  diffractive Z

RZ (0.03<  <0.10, |t|<1)= 

[0.85±0.20(stat) ±0.11(syst)]%

37 diffractive Z→ ee/ candidates 

(RP track, cal<0.1)



Rapidity Gaps btwn Forward Jets  
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MPp
MPpbarCCAL and PCAL

Run 211073 events 85601

Goals:

 characterize rapidity gap formation in forward jet events

fraction of events with rapidity gap

dependence on rapidity gap width

 study Mueller-Navelet jets



Forward Jets and Central Gaps  
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Nucl. Instrum. Meth. A518 (2004) 42.

Nucl. Instrum. Meth. A496 (2003) 333.

to detect forward jets 

3.6< |h|<5.2 we use

MiniPlug Calorimeters

for gap studies

need  low luminosity run

average luminosity 

ℒ ~ 1x1030cm-2s-1







Jet Azimuthal Angle (De)correlation   
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work in progress...

azimuthal decorrelation for CDF kinematics

from  C. Marquet, C. Royon

arXiv:0704.3409

gap

-5.2    -3.6           -1.1            1.1             3.6     5.2

f Jet 1

Jet 2

Jet ET>2 GeV



Rapidity Gaps in Minbias Events  
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PRL 87, (2001) 141803

Strategy of analysis:
look for “experimental gaps” defined as

Δη ≡ ηmax – ηmin

ηmax(ηmin)- “particle” closest to η=0 

in the p(p) direction
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Soft Double-Diffraction (DD) 



Central Gaps in Soft and Hard DD  
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To compare gap probability in
soft and hard DD dissociation:

reconstruct h in both cases
require events to have gap in CCAL |h |<1.1 
=> h2=> significant DD contribution

require opposite side MP jets for hard DD, 
with E

T
>2 GeV

Direct comparison of the results is relatively 
free of systematic uncertainties.



Central Gaps in Soft and Hard DD  
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compare with

soft DD

hard DD

jetjet

Fraction of events with gaps:

~10% in soft DD events and ~1% in jet events 

The distributions are similar in shape within the uncertainties



Conclusions  
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The long-standing diffractive program at CDF continues

to improve our understanding of the diffractive processes.

Diffractive dijets:  

 xBJ, Q
2, t-dependence

Diffractive W/Z measurement with RP:

W diffractive fraction confirms Run I rapidity gap result

W and Z diffractive fractions are equal within error 

Central Rapidity Gaps:

 Gap fraction dependence on width and η-position of gap 

for hard / soft triggers at |η|>4 

 distributions shapes similar for hard / soft triggers

 hard-scale fractions suppressed by factor of ~10  



Extra Slides  
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The Diffractive Structure Function  
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discrepancy in normalization

QCD factorization breakdown 1.09.0

1.00.1
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Regge factorization holds

pomeron exchange



W/Z  Selection  
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Diffractive W/Z selection

 RPS trigger counters – require MIP 

 RPS track - 0.03< <0.10, |t|<1GeV2

 W cal < RP, 50 < MW(RPS,cal) < 120 GeV2

 Z  cal < 0.1
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W/Z Results  
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RW (0.03 < < 0.10, |t|<1)= [0.97 ± 0.05(stat) ± 0.11(syst)]%

Run I: RW (<0.1 )=[1.15±0.55] %  0.97±0.47 % in 0.03 < < 0.10 & |t|<1

RZ (0.03 < x < 0.10, |t|<1)= [0.85 ± 0.20(stat) ± 0.11(syst)]%

DØ Phys Lett B 574, 169 (2003) 

Rw=[5.1±0.51(stat)±0.20(syst)]%

gap acceptance Agap=(0.21±4)%

Uncorrected for Agap

RW=[0.89+0.19-0.17 ]% 

RZ=[1.44+0.61-0.52 ]%

CDF PRL 78, 2698 (1997)

Rw=[1.15±0.51(stat)±0.20(syst)]%

gap acceptance Agap=0.81

Uncorrected for Agap

Rw=(0.93±0.44)%

CDF/DØ Comparison – Run I (< 0.1)



Central Gaps in Run I  
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R=[1.130.12(stat) 0.11(syst)]% at 1800 GeV

R=[2.70.7(stat) 0.6(syst)]% at 630 GeV



MiniPlug Jets  
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jet cone radius

R = 0.4 (0.7)

MP jet is defined as a vector pointing to 

a cluster with seed tower (ET > 400 MeV)

and 1 layer of surrounding towers 

MP Jet energy  =  energy of the seed tower 

+ 

energy of the towers in 

the layer surrounding the seed



Kinematic Distributions for MP Jets  
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Kinematic distributions for the two leading jets in the MPp•MPpbar sample

EJet1,2
T
> 2 GeV

3.5< |hJet1,2 | <5.1   

hJet1.hJet2<0
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