Diffraction at CDF

Christina Mesropian The Rockefeller University

Fermilab Tevatron Collider

Christina Mesropian DIS 2009

CDF II Detectors

Christina Mesropian DIS 2009

Introduction

Diffractive reactions at hadron colliders are defined as reactions in *which no quantum numbers* are exchanged between colliding particles

Kinematics of Diffractive Events

ξ

- four-momentum transfer squared
- fractional momentum loss of antiproton
- $\mathbf{M}_{\mathbf{X}}$ mass of system X

 $\xi = M_X^2/s$

Selection of Diffractive Events CDF Roman Pots acceptance ~80% for $0.03 < \xi_{pbar} < 0.10$, $|t_{pbar}| < 1$ GeV²

by presence of rapidity gap

Diffractive Structure Function

Diffractive dijet cross section $\sigma(\overline{p}p \to \overline{p}X) \approx F_{ii} \otimes F_{ii}^{D} \otimes \hat{\sigma}(ab \to jj)$ Study the diffractive structure function $F_{ii}^{D} = F_{ii}^{D}(x, Q^{2}, t, \xi)$ **Experimentally determine** diffractive structure function F_{ii}^{D} $R_{\frac{SD}{ND}}(x,\xi) = \frac{\sigma(SD_{jj})}{\sigma(ND_{jj})} = \frac{F_{jj}^{D}(x,Q^{2},\xi)}{F_{jj}(x,Q^{2})}$ known PDF Data

Methods and Challenges

Main challenge: multiple interactions spoiling diffractive signatures use $\xi^{cal} < 0.1$ to reject overlap events \rightarrow non-diffractive contributions

Christina Mesropian DIS 2009

Diffractive Structure Function

Confirms Run I results

No significant Q² dependence for 100 < Q² < 10000 GeV² → Pomeron evolves like proton

Fit to double exponential function: $d\sigma/dt \propto 0.9 e^{b1 t} + 0.1 e^{b2 t}$

- ✓ no diffractive dips
- ✓ no Q^2 dependence in slope from inclusive to $Q^2 \sim 10^4 \text{ GeV}^2$

Work in progress:

high |t| range
absolute |t|-slope values

Diffractive W/Z Production

Diffractive W/Z production probes the quark content of the Pomeron

 to Leading Order the W/Z are produced by a quark in the Pomeron f production by gluons is suppressed by a factor of α_s and can be distinguished by an associated jet

Diffractive W production – Run I

Run I studies used rapidity gaps instead of Roman-Pots

•CDF Phys Rev Lett 78, 2698 (1997)

- Fraction of W events due to SD $[1.15\pm0.51(\text{stat})\pm0.20(\text{syst})]\%$

•DØ Phys Lett B 574, 169 (2003) – Fraction of events with rapidity gap (uncorrected for gap survival) –W: [0.89+0.19-0.17]% –Z: [1.44+0.61-0.52]%

Identify diffractive events using Roman Pots:

> accurate event-by-event ξ measurement no gap acceptance correction needed can still calculate ξ^{cal}

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

In W production, the difference between ξ^{cal} and ξ^{RP} is related to missing E_T and η_v

$$\xi^{RP} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_v}$$

allows to determine: neutrino and W kinematics

X_{bj}

reconstructed diffractive W mass

Diffractive W Production: measurement

 $\xi^{cal} < \xi^{RP}$ requirement removes most events with multiple pbar-p interactions

 $50 < M_W < 120 \text{ GeV/c}^2$ requirement on the reconstructed W mass cleans up possible mis-reconstructed events

 $R_{W}(0.03 < \xi < 0.10, |t| < 1) = [0.97 \pm 0.05(\text{stat}) \pm 0.11(\text{syst})]\%$ consistent with Run I result, extrapolated to all ξ

$W \rightarrow e \nu$ Kinematics

Diffractive Z Production

estimate 11 overlap ND+SD background events based on ND ξ^{cal} distribution

Fraction of diffractive Z $R_Z (0.03 < \xi < 0.10, |t| < 1) =$ $[0.85 \pm 0.20(stat) \pm 0.11(syst)]\%$

Rapidity Gaps btwn Forward Jets

Goals:

- characterize rapidity gap formation in forward jet events fraction of events with rapidity gap dependence on rapidity gap width
- study Mueller-Navelet jets

Forward Jets and Central Gaps

Nucl. Instrum. Meth. A518 (2004) 42. Nucl. Instrum. Meth. A496 (2003) 333.

to detect forward jets $3.6 < |\eta| < 5.2$ we use **MiniPlug Calorimeters**

for gap studies need **low luminosity** run

average luminosity $\mathcal{L} \sim 1 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

Jet Azimuthal Angle (De)correlation

Soft Double-Diffraction (DD)

PRL 87, (2001) 141803

Central Gaps in Soft and Hard DD

To **compare gap probability** in soft and hard DD dissociation:

reconstruct $\Delta \eta$ in both cases require events to have gap in CCAL $|\eta| < 1.1$ $=> \Delta \eta > 2 =>$ significant DD contribution

require opposite side MP jets for hard DD, with $E_T > 2 \text{ GeV}$

Direct comparison of the results is relatively free of systematic uncertainties.

Central Gaps in Soft and Hard DD

Gap Fraction in events with a CCAL gap [2.2<∆η<6.6] CDF II Preliminary MinBias MP_•MP_ Jets, E_T > 2GeV $R_{aap} \equiv N_{aap} / N_{all}$ MP_•MP_ Jets, E_T > 4GeV d<u>d Raap</u> d∆n d∆n 10-5 10-5 3.5<| n^{jet1,2}|<5.1 CCAL gap required 10^{-3} 10-4 6 $\Delta \eta = \eta_{max} - \eta_{min}$

compare with

Fraction of events with gaps: ~10% in soft DD events and ~1% in jet events The distributions are similar in shape within the uncertainties Christina Mesropian DIS 2009 21

Conclusions

The long-standing diffractive program at CDF continues to improve our understanding of the diffractive processes.

Diffractive dijets:

▼ x_{BJ} , Q², t-dependence

Diffractive W/Z measurement with RP:

✓ W diffractive fraction confirms Run I rapidity gap result
✓ W and Z diffractive fractions are equal within error

Central Rapidity Gaps:

★ Gap fraction dependence on width and η -position of gap for hard / soft triggers at $|\eta|>4$

 \checkmark distributions shapes similar for hard / soft triggers

 \checkmark hard-scale fractions suppressed by factor of ~10

Extra Slides

The Diffractive Structure Function

QCD factorization breakdown

W/Z Selection

 $E_{T}^{e}(p_{T}^{\mu}) > 25 \, GeV$ $E_{\rm T} > 25 \, {\rm GeV}$ $40 < M_T^W < 120 \, GeV$ $||Z_{vtx}| < 60 \, cm$

$E_T^{e_1}(p_T^{\mu_1}) > 25 \text{ GeV}$ $E_T^{e_2}(p_T^{\mu_2} > 25 \text{ GeV}$ $66 < M^Z < 116 \text{ GeV}$ $|Z_{vtx}| < 60 \text{ cm}$

Diffractive W/Z selection $\square RPS trigger counters - require MIP$ $\square RPS track - 0.03 < \xi < 0.10, |t| < 1 GeV^2$ $\square W \rightarrow \xi^{cal} < \xi^{RP}, 50 < M_W(\xi^{RPS},\xi^{cal}) < 120 GeV^2$ $\square Z \rightarrow \xi^{cal} < 0.1$

 R^{W} (0.03 < ξ < 0.10, |t|<1)= [0.97 \pm 0.05(stat) \pm 0.11(syst)]%

Run I: R^W (ξ<0.1)=[1.15±0.55] % → 0.97±0.47 % in 0.03 < ξ < 0.10 & |t|<1

 $R^{Z}(0.03 < x < 0.10, |t|<1) = [0.85 \pm 0.20(stat) \pm 0.11(syst)]\%$

CDF/DOC Comparison – Run I ($\xi < 0.1$)

CDF PRL 78, 2698 (1997) $R^{w} = [1.15 \pm 0.51(stat) \pm 0.20(syst)]\%$ gap acceptance $A^{gap} = 0.81$ <u>Uncorrected for A^{gap} </u> $R^{w} = (0.93 \pm 0.44)\%$ DØ Phys Lett B **574**, 169 (2003) $R^{w} = [5.1 \pm 0.51(stat) \pm 0.20(syst)]\%$ gap acceptance $A^{gap} = (0.21 \pm 4)\%$ <u>Uncorrected for A^{gap} </u> $R^{w} = [0.89 + 0.19 - 0.17]\%$ $R^{Z} = [1.44 + 0.61 - 0.52]\%$

Central Gaps in Run I

 $\begin{array}{l} R = [1.13 \pm 0.12(stat) \pm 0.11(syst)]\% \ at \ 1800 \ GeV \\ R = [2.7 \pm 0.7(stat) \pm 0.6(syst)]\% \ at \ 630 \ GeV \end{array}$

Christina Mesropian DIS 2009

MiniPlug Jets

jet cone radius

MP jet is defined as a vector pointing to a cluster with seed tower ($E_T > 400 \text{ MeV}$) and 1 layer of surrounding towers

MP Jet energy = energy of the seed tower + energy of the towers in the layer surrounding the seed

Kinematic Distributions for MP Jets

 $E^{Jet1,2}_{T} > 2 \text{ GeV}$ 3.5< $|\eta^{Jet1,2}| < 5.1$ $\eta^{Jet1}.\eta^{Jet2} < 0$

Kinematic distributions for the two leading jets in the MP_p•MP_{pbar} sample

Extra Slides

Christina Mesropian DIS 2009