

ATLAS-The Forward System

Detectors

QCD Physics Low lum

ZDC physics

Electromagnetic Calorimeters

See talk by Laura FABBRI for details of ATLAS Forward Detectors

ATLAS-The Forward Detectors

QCD Physics Low lumi

ALFA at 240 m

ZDC physics γ/γp Physics Low lumi

for ATLAS Absolute Luminosity

γ/γp Physics

ligh Lumi

High lumi

QCD

Zero Degree Calorimeter

Luminosity Cerenkov Integrating Detector

ZDC at 140 m

LUCID at 17 m

See talk by Laura FABBRI for details of ATLAS Forward Detectors

James Pinfold DIS-2009

QCD Physics

Plans for the Forward Region

- Noveable beam pipe are used to locate detectors

James Pinfold

DIS-2009

Forward Physics Program - QCD

ATION OF THE FORWARD REGI

Elastic (25% of σ_{tot}

/γp Physics

Imil wo

Low lumi

Double diffractive

ZDC physics

/γp Physics

High lumi

QCD

James Pinfold DIS-2009

Madrid

Diffraction

- HARD DIFFRACTION: X = jets, Ws, Zs, Higgs, etc:
- Hard processes calculable in pQCD
- Into on proton structure: dPDFs and GPDs
- Discovery physics (!)
- SOFT DIFFRACTION: X = anything, dominated by soft physics, important insights on npQCD:
- Gap survival probability,
- Multi-parton interactions
- Pile-up contributions at high-luminosity.

QCD Physics Low lumi

ZDC physics

High lumi ရင္ပြာ

γγ/γp Physics High lumi

Absolute Lumi & σ_{tot}

TO STUDY ELASTIC SCATTERING in the 625m, beam div.∼0.2µ region: L ~10²⁷ cm⁻²s-1, large

Fit of data gives --> σ_{tot} L, ρ ,b(Δ L/L ~3%)

USE THE OPTICAL THEOREM as a complementary solution

$$\begin{cases} L = \frac{(1+\rho^2)}{16\pi} \frac{N_{\text{tot}}^2}{\frac{dN_{\text{el}}}{dt}\Big|_{t=0}} \\ \sigma_{\text{tot}} = \frac{N_{\text{tot}}}{T} \end{cases}$$

•
$$N_{tot}$$
, $dN_{e}/dt|_{t=0} \rightarrow L$ and σ_{tot}

- © Theoretical determination of ρ
- Provide high precision (2-3%) LUCID CALIBRATION

N_{text} is the total interaction rate

Diffraction - Detector Inputs

- ARD PROTON TAG

- ⊗ PILE-UP will kill rap

γγ/γp Physics

QCD

ligh lumi

6

5

10 n

γγ/γp Physics Low lum

Soft SD with ALFA

- active (SD) events
- spectrum in region Measure forward proton $6.3 \text{ TeV} < E_{prot} < 6.993 \text{ TeV}$

QCD Physics

Low Lumi

- SD measurement for ξ<0.01.
- Non-diffractive forward proton spectrum $0.01 < \xi < 0.1.$ measurement for
- Expect 1.2-1.8M events in 100hrs at $L = 10^{27}$ cm⁻² s⁻¹.

James Pinfold

DIS-2009

Hard Single Diffraction

- Look for hard scatter event with gap on one side of the detector.
- Compare gap/non-gap ratio to determine soft-survival.
- Gap defined by LUCID/ZDC + FCAL

ZDC physics

- FCAL gap needed to restrict event to diffracti
- Of the order of 10K SD di-jet events in 100 pb-1 (~1.5 years at 10³¹ cm⁻² s⁻¹) with jet transverse energy > 20 (40) GeV after

Trigger prescale 6000 (100) at L=10 31 cm $^{-2}$ s $^{-1}$ for jet E $_{
m T}$ > 10(42) GeV James Pinfold DIS-2009 Madrid

γγ/γp Physics

High lumi

ရှင်

DPE

Detectors

γ/γp Physics Low Lumi

γγ/γp Physics High lumi High lumi

DPE/CEP

- Two central jets with $|\eta|$ <2.5.

- Expect ~ 100 events in 100pb⁻¹

Gaps Between Jets

γγ/γp Physics

High lumi

High lumi

ရင္ပ

et exchange production via colour

 (background from single gluon exchange process).

Require two jets, one in each

Require gap ir

ATLAS can

ZDC physics

4/26/09

James Pinfold

DIS-2009

Madrid

Photon Induced Muon Pairs

EXCLUSIVE Dileptons

- Two isolated leptons back-to-back in ϕ , balanced in P_T
- Leptons derive from an exclusive vertex (no other tracks can join)
- Protons remain intact no other activity in the detector (use FCAL, LUCID, ZDC)

γγ/γp Physics

Low lumi

QCD Physics

Low lumi

Detectors

PROCESSES (Observed by CDF):

ZDC physics

- Two photon production → nonresonant lepton pairs from γγ →I+I-
- − Photoproduction lepton pairs through J/ψ & upsilon resonances γ IP → J/ψ , Y → I+I−

γγ/γp Physics

High lumi

High lumi

ရင္ပြာ

Photon Induced Muon Pairs

In MC, several hundred two-photon and Upsilon events pass the final selection in the dimuon channel, for 100 pb⁻¹:

```
709 ± 27 (stat) elastic events
636 \pm 25 (stat) \pm 121 (model) singly inelastic events, no ZDC/Castor
                                                                                   223 \pm 15 (stat) \pm 42 (model) singly inelastic events
                                                                                                                         CMS
```

QCD Physics

Low lumi

Detectors

- γγ/γp Physics Low lumi QED process - minimal uncertainties on the cross-section, highly constrained 4-body final state
- Startup applications candidate for:
- Luminosity calibration

ZDC physics

- Low p_∓ lepton ID studies
- High-luminosity applications:

High lumi

ရင္ပြာ

 - "Standard candle" for BSM physics in high energy interactions: χχ→γγ,
 χχ→ slepton pairs, Higgs pairs, W-pairs etc. Alignment & calibration of forward proton taggers

γγ/γp Physics High lumi

QCD Physics Low lumi

ZDC physics

γγ/γp Physics High lumi

ZDC - Physics

VERY FORWARD CROSS-SECTIONS

- New energy range explored
- Study particle production
- cosmic ray MCs (Modeling Input for high energy air showers)
- Improve hermiticity

HEAVY-ION PHYSICS: count spectator neutrons

- Determine the event centrality
- Trigger for ultra-peripheral collisions (b> 2R_{nucleus}

B/=ANOSITY Using Van Der

QCD Physics Low Immi

γγ/γp Physics

ZDC physics

High lumi ရသူ

γ/γp Physics igh lumi

QCD at Hi Lumi the AFP Project

AFP - Forward Proton Spectrometers to tag protons @ 220m & 420m.

ō

- Use fast timing to reduce pile-up background at high luminos
- Good acceptance and mass reso for the CEP Higgs

James Pinfold **DIS-2009**

Madrid

QCD Physics Low lumi

ZDC physics

High lumi QCD D

γγ/γp Physics High lumi

Higgs Production

- SM h→WW*, 140 < M_h < 180 GeV
- *Higgs boson studies* Higgs mass
- Standard Model h→WW* for $M_h > 140$ GeV.
- MSSM h,H→bb and h,H→τ+τfor **M,/H <** 240GeV.
- NMSSM h→aa→4τ, 90GeV < M_{h} < 110GeV.
- Slepton pair production.
- split-SUSY models

See the talks of Krzysztof PIOTRZKOWSKI Valed KHOZE in this session

Rich γp+γγ Physics via p-Tagging

102

See talk by Krzysztof PIOTRZKOWSKI in this session

4/26/09

James Pinfold DIS-2009

Madrid

Summary & Conclusions

Detectors

QCD Physics Low lumi

γγ/γp Physics

ZDC physics rationale

High lumi ရှင်မ

γγ/γp Physics High lumi

LUMINOSITY:

LUCID and ALFA will provide the luminosity to ATLAS to better than 5% accuracy.

FORWARD PARTICLE SPECTRUM:

- ZDC (and LHCf experiment) will measure forward particle production for MC tuning.
- ZDC will measure forward spectators for heavy ion collisions; provide trigger, centrality measurements and a luminosity measurement.

LOW LUMINOSITY PHYSICS:

- Elastic scattering and α_{tot} (at the 2-3% level) using ALFA
- Single diffractive forward proton spectrum (ALFA).
- Single diffractive di-jet and W production, DPE and CEP of di-jets (with rapidity gap veto in FCAL, LUCID, ZDC).
- Gaps between jets as a probe of colour singlet exchange.

POSSIBLE AFP (HIGH LUMI) UPGRADE AT 220M and 420M:

- Proton tagging gives access to CEP Higgs production and SUSY physics as well as γ-γ and γ-IP physics, at high luminosity
- THE LHC WILL BE 4 COLLIDERS IN 1: p-p, IP-IP, γ-IP,γ-γ!

Extra Slides

The ALFA Roman Pots

- Aim to measure elastic scattering using Roman Pot spectrometers.
- Need special (High β*) optics to measure scattering angle:
- Parallel-to-point focussing
- Low luminosity special runs (L=10²⁷ cm⁻² s⁻¹)

Absolute Luminosity Determination

Elastic scattering rate given by nuclear and EM (Coulomb) terms:

$$\frac{dN}{dt} = L\pi |F_{c} + F_{N}|^{2}$$

$$= L \left(\frac{4\pi\alpha^{2} (\hbar c)^{2}}{|t|^{2}} - \frac{\alpha\rho\sigma_{tot}e^{-B|t|/2}}{|t|} + \frac{\sigma_{tot}^{2} (1 + \rho^{2})e^{-B|t|}}{16\pi (\hbar c)^{2}} \right)$$

Fit to ALFA data gives luminosity to \sim 3% inc. systematics).

	Input	Linear fit	Error [%]
L [10 ²⁶ cm -2 s-1]	8.10	8.151	1.77
$\sigma_{tot}[mb]$	101.511	101.14	0.9
b [GeV-2]	18	17.93	0.25
ρ	0.15	0.143	4.3
Fit range		0.00055<-t<0.055	0.055
Fit quality [χ²/Ndof]		2845/2723	

- Detector edge 1.5mm from beam:
- $\theta_{min} = 2.7 \mu rad$
- $t_{min}=0.00055$

Low-x at the LHC

LHC: due to the high energy can reach small values of Bjorken-x in structure of the proton F(x,Q²)

Processes:

- Drell-Yan
- Prompt photon production
- Jet production
- W production

If rapidities above 5 and masses below 10 GeV can be covered ⇒ x down to 10-6-10-7

Proton structure at low-x !!
Parton saturation effects?

Trigger conditions

- For the special run (~100 hrs, L=1027cm-2s-1)
- ALFA trigger
- coincidence signal left-right arm (elastic trigger)
- each arm must have a coincidence between 2 stations
- rate about 30 Hz
- 2. LUCID trigger
- coincidence left-right arm (luminosity monitoring)
- single arm signal: one track in one tube
- 3. ZDC trigger
- single arm signal: energy deposit > 1 TeV (neutrons)
- 4. Single diffraction trigger
- □ ALFA.AND.(LUCID.OR.ZDC)
- central ATLAS detector not considered for now

40.1	44.9	Total acceptance
54.2	1:09	ALFA (Relative to preselection)
		RP selection
74	75	Total preselection
38.7	24.9	[Central ATLAS E> 100 GeV]
57-3	45.1	LUCID [1 track]
38.7	51.5	ZDC [E>1 TeV]
94.8	97.1	ξ<0.2
		Preselection
Phojet	Pythia	Efficiency [%]