Study of W and Z Production in the LHC

María Cepeda (CIEMAT)

On behalf of the

CMS & ATLAS Collaborations

Outline

- Introduction
- Standard Model Physics @ LHC
 - Cross-Section Measurement for first data
 - W and Z Selection in ATLAS and CMS
- Weak Vector Bosons Production and PDFs
 - Expected uncertainties
 - Constraints: Rapidity Distribution (ATLAS) and W Asymmetry measurement (CMS)
- Conclusions

See talks by E. Klinkby on
"Prospects for Precise ElectroWeak Physics" and by J. Nielsen on
"W/Z+jets crossection measurements" for more on W and Z physics at the LHC

ntroduction: LHC Start-Up

Magnetic Field		2.4 T Solenoid + 4T Toroid	4 T Solenoid	
Inner Tracker	σ(p _T)/p _T (100 GeV)	3.8%	1.5%	
	η coverage	2.5	2.5	
EM Calorimeter	σ(E)/E	$10\%/\sqrt{E+0.007}$	$2-5\%/\sqrt{E+0.005}$	
ENI Calorinietei	η coverage	3.2	3.0	
UAD Colorimotor	σ(E)/E	$50\%/\sqrt{E+0.03}$	$100\%/\sqrt{E+0.05}$	
HAD Calorimeter	η coverage	4.9	5.2	
Muon	$\sigma(p_T)/p_T (1 \text{ TeV})$	7%	5%	
Performance	η coverage	2.7	2.4	

Standard Model Measurements

• The LHC is a discovery machine, but before any new physics is found the Standard Model has to be re-discovered.

Vector Boson production

- → benchmark process for the LHC
- Large production cross-sections
- Well understood theoretically
- Clean and simple experimental signatures
- W, Z Standard Candles for detector calibration
- Background for many searches
- W and Z measurements provide unique tools for testing the SM in a new energetic regime (10 TeV)

Standard Candles

LHC is a W, Z factory!

 $\sim 10^5$ W, $\sim 10^4$ Z events for 10 pb⁻¹

(cross-sections 4, 6 times larger than Tevatron)

- Well known theoretically ($\Delta \sigma / \sigma < 5\%$)
- Selection criteria keep robust for first data analysis
- Data Driven methods are essential!

σ(pb)	$\sqrt{\mathrm{s}}$		
LO	10 TeV	14 TeV	
Z → 11	1200	1800	
W→lv	11800	17200	

I=e,μ,τ

Detector Tuning

- Luminosity measurement
- Momentum Scale and Resolution
- Misalignment calibration
- Lepton Efficiencies

EWK&QCD Measurements

- •Inclusive and differential σ
- •W, Z + jets σ and ratios
- $\cdot M_W$, Γ_W
- Di-Boson production
- Asymmetries
- PDF constraints

Z->I+I- Selection

- Experimental Signature: Two isolated, opposite charge, leptons of high momentum; $M(\ell\ell) \sim M_Z$
- Minimal background contamination (<1%): $Z\rightarrow \tau\tau$, ttbar, QCD,W+jets
 - > Estimated from sidebands, charge correlation and/or fits to the whole mass range
- Calibration tool: Momentum Scale and Resolution of leptons,
 Misalignement monitor
- Efficiency Calculation: estimated from Tag and Probe methods and/or simultaneous fits to signal and background

W->Iv Selection

- Experimental Signature: Isolated high p_t lepton, high E_{T_t} high M_T
- Main Backgrounds:
 - **ElectroWeak:** $Z \rightarrow ll$, $W \rightarrow \tau \nu$ (estimated from Monte Carlo)
 - **QCD:** Estimated from data (Matrix and Template methods)
- $Z \rightarrow ll$ information used for modeling $M_T(W)$ shape and for lepton efficiency calculations

DIS 09

Vector Boson Cross-sections

$$\sigma_{W(Z)} \times Br(W(Z) \to ll) = \frac{N_{W(Z)}^{obs} - N_{W(Z)}^{bckg}}{A_{W(Z)} \varepsilon_{W(Z)} \int Ldt}$$

Uncertainty at Start-Up:

- Statistical: $\sim 1\%$ at $\mathcal{L}=10$ pb⁻¹ \rightarrow Measurement dominated by systematics!
- A_W : Detector Acceptance (QED and QCD corrections, PDF uncertainties) $\rightarrow \sim 2\%$
- $\varepsilon_{\rm W}$: Selection efficiency (trigger, reconstruction, identification) evaluated from data \rightarrow <3%
- Nobs- Nbckg: Background Estimation (from MC or from data) \rightarrow <5%
- Luminosity: $\sim 10\%$ (later on expected to be $\sim 3-7\%$)

e decays $\Delta\sigma/\sigma(Z\rightarrow ee) = 0.8 \text{ (stat)} \pm 4.1 \text{ (syst)} \%$ $\Delta\sigma/\sigma(W\rightarrow ev) = 0.2 \text{ (stat)} \pm 5.2 \text{ (syst)} \%$ $\Delta\sigma/\sigma(W\rightarrow \mu\nu) = 0.2 \text{ (stat)} \pm 3.1 \text{ (syst)} \%$

 $\mathcal{L}=50 \text{ pb}^{-1}$

WProduction & PDFs

$$\sigma_{pp\to VX} = \sum_{a,b=q,\overline{q},g} \int_0^1 dx_1 dx_2 f_a(x_1,Q^2) f_b(x_2,Q^2) \sigma_{ab\to VX}(x_a,x_b,Q^2)$$
LHC parton kinematics

- PDFs $f_a(x, Q^2)$: parametrization of the partonic content of the proton
 - → obtained from global fits to the existing data (HERA, ZEUS, CDF, DO, fixed target DIS)
- → In pp collisions W and Z are produced by Valence-Sea and Sea-Sea interactions
- → At LHC W and Z will be produced at low x for central rapidities (not in the valence region)

14 TeV: $6.10^{-4} < x < 6.10^{-2}$

10 TeV: $8.5 \cdot 10^{-4} < x < 8.5 \cdot 10^{-2}$

V Production & PDFs

Different sets of PDFs

- → Uncertainties < 4 %
 - •Theoretical: perturbative calculations, non-perturbative parametrizations
 - •Experimental: statistical and systematic

→Differences between central values from different PDF sets can differ more than the uncertainty estimates

Predictions for the total cross-sections for 10 TeV

PDF set (10 TeV)	$\sigma_{W+} B_{W \rightarrow Iv} (nb)$	$\sigma_{W-} B_{W \rightarrow Iv} (nb)$	$\sigma_{z} B_{z \rightarrow II}$ (nb)
MSTW08	8.62 ± 0.16	6.30 ± 0.12	1.39 ± 0.025
CTEQ66	8.77 ± 0.18	6.22 ± 0.14	1.40 ± 0.027
HERAPDF	8.64 ± 0.10	6.27 ± 0.11	1.38 ± 0.02
CTEQ61	8.29 ± 0.22	5.90 ± 0.17	1.32 ± 0.030
ZEUS-2005	8.51 ± 0.30	6.08 ± 0.20	1.36 ± 0.04

PDF uncertainties @ LHC

- Rate uncertainty (CTEQ6.5) → ~4%
 - → Related to a global normalization factor
 - → Reduced in relative measurements (ratios, distribution shapes)
 - → If PDF uncertainties <5% → luminosity measurement at LHC better than 5% using W, Z cross-sections

CTEQ 6.5	ΔRate	ΔAcceptance
$Z \rightarrow ll$ $M_{ll} > 40, p_t > 20, \eta < 2$	3.79%	1.32%
$W^+ \rightarrow l^+ \nu$ $\not E_T > 20, p_t > 25, \eta < 1$	4.01%	2.28%
W-→l-v $\not\!\!E_T$ >20, p_t >25, $ \eta $ <1	3.31%	2.22%

• Acceptance uncertainty $\rightarrow \sim 2\%$ (affects experimental σ uncertainty)

14 TeV

PDF Constraints

W and Z measurements will improve our knowledge of PDFs

→ Looking at lepton decay spectra (ATLAS)

W⁺: ud

W: ud

→ Looking at observables less sensitive to systematics → Ratios (CMS)

$$A_{ZW} = \frac{Z}{W^+ + W^-}$$

$$A_{W} = \frac{W^{+} - W^{-}}{W^{+} + W^{-}}$$

$$A_l = \frac{l^+ - l^-}{l^+ + l^-}$$

hep-ph/0901.0002v2

W and Z total cross sections at the LHC

W⁺ and W⁻ total cross sections at the LHC

Rapidity distribution

- → If systematics at ~5% order, improvement of pdfs expected, especially in the description of the gluon PDF at low X
- ATLFAST approach
 - 150 pb⁻¹ of W \rightarrow eNu at 14 TeV
 - Generated with CTEQ6.1M
 - 4% of systematic error from detector simulation introduced (statistical error negligible)
 - Introduce data in the global ZEUS PDF fits
 →Re-Do fit

Reduction of the error band $(6\% \rightarrow 4.5\%)$

$$xg(x) \sim x^{-\lambda}$$

$$\lambda = -0.199 \pm 0.046 \quad \Longrightarrow \quad \lambda = -0.186 \pm 0.027$$

 \rightarrow Improvement of 41% in $\Delta\lambda$

W Asymmetry

• More $u\overline{d}$ than $d\overline{u}$ in pp collisions \rightarrow Charge Asymmetry in W production

$$A(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \bar{\nu}_{\mu}) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu_{\mu})}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \bar{\nu}_{\mu}) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu_{\mu})}$$

$$A_{w} \approx \frac{u\overline{d} - \overline{u}d}{u\overline{d} + \overline{u}d} \approx \frac{u_{val} - d_{val}}{u_{val} + d_{val} + 2\overline{q}}$$

Variation with η
→ d/u asymmetry
& V-A asymmetric
decay of W

- Different predictions from PDF sets > predictions for valence distributions at small-x are different
- A_w varies from +10% to +20% (predicted with 1-2% error)
- Precision at 1% or less, sampled in several rapidity bins → constrains PDFs within a same SET (ie CTEQ)

W Asymmetry

CMS Measurement of A₁

- Full data-driven analysis performed with CTEQ6.5
- Generated 100 pb⁻¹ of W $\rightarrow \mu \nu$
- W Selection like in inclusive σ measurement
- Backgrounds:
 - QCD (10%), top
 - DY (5%), W \rightarrow TV
 - → Overall dilution of the asymmetry ~20 %
- Experimental systematical effects
 - Muon triggering, reconstruction & ID <1%,
 - Detector misaligned, miscalibration <1%

W Asymmetry

- At low integrated luminosities (10 pb⁻¹) the experimental measurement is a sensitive check of the validity of PDF assumptions at the LHC.
- At larger integrated luminosities (> 100 pb⁻¹) the measurement becomes a clean way to improve our PDF knowledge.

Measured A₁ corrected from background dilution

Uncertainty band from CTEQ6.5 PDF predictions

Improved accuracy and change of shape of valence quark PDFs from $\mathcal{L} = 100 \text{ pb}^{-1}$

Conclusion

- LHC Start-Up will bring Particle Physics to a new energy regime
 - ATLAS and CMS are ready for collisions
 - First data will help to understand and tune the detectors for new physics
 - Luminosity and cross-sections much higher than previous experiments
- Rediscovery of the Standard Model: W and Z benchmark processes
 - Tools for calibration of the detector (Momentum Scale, Tag&Probe)
 - First tests of our knowledge of the SM
 - First data > First Measurement of the W&Z cross-sections @ 10 TeV
- Knowledge of **PDFs**:
 - Main theoretical contribution to uncertainties
 - W Lepton Rapidity Distribution & W Asymmetry will improve our knowledge of PDFs at 100 pb⁻¹ (if systematics <5%)

Acknowledgements

• Thanks to the ElectroWeak groups in ATLAS & CMS for their help and comments ©

Main references

- ATLAS & CMS Physics TDR
- PDF constraints from ATLAS: A. Tricoli et al, hep-ex/0509002
- CMS W&Z crossection measurements with first data (e & μ)

 CMS PAS EWK-07-02, EWK-08-005, EWK-09-001
- Muon Charge Asymmetry in CMS: CMS PAS EWK-08-002
- Parton Distributions for the LHC, A.Martin et al: hep-ph/0901.0002
- Evaluation of Theoretical Uncertainty of $Z \rightarrow ll \ (W \rightarrow lv)$ crossections at the LHC, N. Adam et al: hep-ph/0802.3251 (hep-ph/0808.0758)
- Proceedings from HCP 08 (K. Mazumdar)
- Proceedings from DIS 08 & 07 (A. Cooper-Sarkar, S. Bolognesi, S. Goy)

 Talk on ATLAS PDF issues at "Standard Model Discoveries with early LHC data", March 2009, by A. Cooper-Sarkar

DIS 09

Back-Up

Forward-Backward Z Asymmetry

• Asymmetry in the polar emission angle of the electron in the rest frame of the e^-e^+ pair in pp $\rightarrow Z \rightarrow ee$ events

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{8} N_C \left[1 + \frac{4}{3} A_{FB} \cos\theta + \cos\theta^2 \right]$$

Counting problem:
$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

• Determination of Standard Model Parameter $\sin^2 \theta_{eff}$:

$$A_{FB} = b(a - \sin \theta^{lept}_{eff})$$

pdf dependent

ATLAS: Measurement of sin²θ_{eff} for 100 fb⁻¹

 $\delta \sin^2 \theta_{eff} = (1.5(stat) \pm 0.3(exp) \pm 2.4(PDF)) \times 10^{-4}$

→ Possible constraint on PDFs?

Rapidity distribution

• Measuring the decay lepton spectra in ATLAS & CMS we can improve our knowledge of PDFs

W⁺: ud W⁻: ud

ATLAS: Comparison of different PDF sets
Generate pseudodata at 14TeV corresponding to
100pb⁻¹ using CTEQ6.1M ZEUS_S MRST2001
PDFs → Simulate Detector & Selection Cuts with
ATLFAST

At y=0 the total uncertainty is

~ ±6% from ZEUS

~ ±4% from MRST01E

~ ±8% from CTEQ6.1

hep-ex/0509002 hep-ex/0511020

DIS 09

PDF Predictions for o

PDF set	$\sigma_{W+} B_{W o lV} \ (nb)$	$\sigma_{W-} B_{W \rightarrow lv}(nb)$	$\sigma_{z} B_{z \rightarrow ll}(nb)$	
ZEUS-2005	11.87±0.45	8.74±0.31	1.97±0.06	4 TeV
MSTW08	11.97±0.22	9.04±0.16	1.98±0.035	
CTEQ66	12.34±0.34	9.06±0.22	2.02±0.04	
HERAPDF	12.13±0.13	9.13±0.15	2.01±0.025	
CTEQ61	11.61±0.34	8.54±0.26	1.89±0.055	
NNPDF1.0	11.83±0.26	8.41±0.20	1.95±0.04	

Re-Done for 10 TeV

Talk on ATLAS PDF issues at "Standard Model Discoveries with early LHC data", March 2009.

by A. Cooper-Sarkar

PDF set	$\sigma_{W+} B_{W \rightarrow lV}$ (nb)	$\sigma_{W-} B_{W \rightarrow lv}(nb)$	$\sigma_{z} B_{z \to ll}(nb)$
ZEUS-2005	8.51±0.30	6.08±0.20	1.36±0.04
MSTW08	8.55±0.15	6.25±0.12	1.38±0.025
CTEQ66	8.77±0.18	6.22±0.14	1.40±0.027
HERAPDF	8.64±0.10	6.27±0.11	1.38±0.02
CTEQ61	8.29±0.22	5.90±0.17	1.32±0.030

$E_{CM} = 10 \text{ TeV}$

First run of LHC will be at E_{CM} =10 TeV

→All the results shown in the talk (W asym & W rapidity) correspond to 14 TeV analysis

→Results being updated currently to prepare for the new center of mass energy

Efficiency: Tag&Probe

- All the online (trigger) and offline (reconstruction, identification, isolation) efficiencies for leptons are computed from the Z sample with tag&probe method:
 - Tabulate efficiency in p_t , η bins to incorporate to analysis
 - Beware of possible correlations
 - Method validated with Monte Carlo samples
- Example: Trigger efficiency

Lepton Momentum Scale

Di-lepton resonances will be used in ATLAS&CMS to measure momentum scale and resolution

Example from **CMS** using $Z \rightarrow \mu\mu$ data:

→ likelihood technique to compute correction (as a function of muon kinematics) forcing the Z peak in the right position

DIS 09

W-Iv Background Estimation

• Template method:

Obtain bckg shape template reversing one of the cuts (ie, isolation)

Obtain signal template from $Z\rightarrow 11$

Fit data to signal & bckg templates

Matrix method:

Select two uncorrelated variables

Divide phase space into 1 signal-like region (A) and 3 background-like region (B,C,D)

Obtain Background contamination in A from B, C, D →

 $QCD(A) \sim QCD(B)xQCD(C)/QCD(D)$

Correct for signal contamination in bckg regions (using signal template)

W Mass

- Fundamental parameter of the Standard Model $(M_W \& M_{top} \rightarrow constraints on the Higgs Mass)$
- M_W obtained from M_T and from p_t :
 - Z events used to build template for W
 - Fit the templates to the data \rightarrow m_W

$$m_T^{W} = \sqrt{2p_T^l p_T^{V} (1 - \cos \Delta \phi)}$$
$$p_T^{V} \equiv p_T^{\text{missing}}$$

 Z events are crucial: template & lepton energy scale and energy resolution, as well as to control systematics

W Mass

Low luminosity measurement

ATLAS 15 pb ⁻¹	pT(e)	pT(μ)	MT(e)	MT(µ)
Stat	120	106	61	57
Exp	114	114	230	230
Theo	25	25	25	25
TOT	167	158	239	238

Not competitive with current error. Sets the experimental method

See Esben Klinkby's talk on Precise ElectroWeak Physics

High luminosity measurement

CMS	E _T (e)		M _T (μ)	
	1 fb	10 fb	1 fb	10 fb
Stat	40	15	40	<15
Ехр	40	<20	64	<30
Theo	20	<10	20	<10
тот	60	26	78	35

Improvement in the W mass caculation!
Precision expected ~10 MeV
(combining both channels for 10 fb⁻¹)

DIS 09