

A Matrix Formulation for Small-x RG Improved Evolution

Dimitri Colferai

colferai@fi.infn.it

University of Florence and INFN Florence (Italy)

update of JHEP 08 (2007) 046

In collaboration with: M. Ciafaloni

G.P. Salam

A.M. Staśto

DIS 2009 Madrid April 2009

- Some "historical" physical problems
 - Reliable description of rising "hard" cross sections and structure functions at high energies
 - Precise determination of parton splitting functions at small-x while keeping their well known behaviour at larger-x;
 - Providing a small-x resummation of parton ev. in matrix form: quarks and gluons are treated on the same ground and in a collinear factorization scheme as close as possible to $\overline{\rm MS}$

- Some "historical" physical problems
 - Reliable description of rising "hard" cross sections and structure functions at high energies
 - Precise determination of parton splitting functions at small-x while keeping their well known behaviour at larger-x;
 - Providing a small-x resummation of parton ev. in matrix form: quarks and gluons are treated on the same ground and in a collinear factorization scheme as close as possible to $\overline{\rm MS}$

Outline

- Generalizing BFKL and DGLAP evolutions
- Criteria and mechanism of matrix kernel construction
- Resummed results and partonic splitting function matrix
- Conclusions

Generalizing BFKL and DGLAP eqs

- The BFKL equation (1976) predicts rising cross-sections but
 - Leading log predictions overestimate the hard Pomeron exponent, while NLL corrections are large, negative, and may make it ill-defined (Fadin, Lipatov; Camici, Ciafaloni: 1998)
 - Low order DGLAP evolution is consistent with rise of HERA SF, with marginal problems (hints of negative gluon density)
 - Need to reconcile BFKL and DGLAP approaches

Generalizing BFKL and DGLAP eqs

- The BFKL equation (1976) predicts rising cross-sections but
 - Leading log predictions overestimate the hard Pomeron exponent, while NLL corrections are large, negative, and may make it ill-defined (Fadin, Lipatov; Camici, Ciafaloni: 1998)
 - Low order DGLAP evolution is consistent with rise of HERA SF, with marginal problems (hints of negative gluon density)
 - Need to reconcile BFKL and DGLAP approaches
- Collinear + small-x Resummations
 - In the last decade, various (doubly) resummed approaches (CCS + CCSS; Altarelli, Ball, Forte; Thorne, White ...)
 - Main idea: to incorporate RG constraints in the BFKL kernel Output: effective (resummed) BFKL eigenvalue $\chi_{\rm eff}(\gamma)$ or the "dual" DGLAP anomalous dimension $\Gamma_{\rm eff}(\omega)$ (+ running $\alpha_{\rm s}$)
 - So far, only the gluon channel is treated self-consistently; the quark channel is added by k-factorization of the $q \bar{q}$ dipole

The Matrix Approach

Generalizes DGLAP self-consistent evolution for quarks and gluons in
 k-factorized matrix form

$$F(x,Q^2) = \int_x^1 \frac{\mathrm{d}z}{z} \int \mathrm{d}^2 \mathbf{k} \sum_{a=q,g} h_a(\frac{x}{z},Q^2,\mathbf{k}) \mathcal{F}_a(z,\mathbf{k}) ,$$

so as to be consistent, at small x, with BFKL gluon evolution

• Defines, by construction, some unintegrated partonic densities \mathcal{F}_a at any x; evolution of \mathcal{F}_a governed by matrix kernel: $\mathcal{F}_a = \mathcal{F}_a^{(0)} + \mathcal{K}_{ab} \otimes \mathcal{F}_b$

The Matrix Approach

 Generalizes DGLAP self-consistent evolution for quarks and gluons in k-factorized matrix form

$$F(x,Q^2) = \int_x^1 \frac{\mathrm{d}z}{z} \int \mathrm{d}^2 \mathbf{k} \sum_{a=q,g} h_a(\frac{x}{z},Q^2,\mathbf{k}) \mathcal{F}_a(z,\mathbf{k}) ,$$

so as to be consistent, at small x, with BFKL gluon evolution

• Defines, by construction, some unintegrated partonic densities \mathcal{F}_a at any x; evolution of \mathcal{F}_a governed by matrix kernel: $\mathcal{F}_a = \mathcal{F}_a^{(0)} + \mathcal{K}_{ab} \otimes \mathcal{F}_b$

Main construction criteria for the matrix kernel

- Should incorporate exactly NLO DGLAP matrix evolution and the NLx BFKL kernel
- Should satisfy RG constraints in both ordered and antiordered collinear regions, and thus the $\gamma \leftrightarrow 1 \gamma + \omega$ symmetry (see below)
- Is assumed to satisfy the Minimal-pole Assumption in the γ and ω expansions (see below)

• Recall: DGLAP is an evolution equation for PDF $f_a(x,Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial(\log 1/x)$ conjugated to x

$$\frac{\partial}{\partial \log Q^2} f_a = [\Gamma(\boldsymbol{\omega})]_{ab} f_b$$

• Recall: DGLAP is an evolution equation for PDF $f_a(x,Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial(\log 1/x)$ conjugated to x

$$\frac{\partial}{\partial \log Q^2} f_a = [\Gamma(\boldsymbol{\omega})]_{ab} f_b$$

• BFKL is an evolution equation in x for unintegrated gluon PDF $\mathcal{F}(x, \mathbf{k}^2)$, and defines the kernel $K(\gamma)$, with $\gamma = \partial/\partial(\log \mathbf{k}^2)$ conjugated to \mathbf{k}^2

$$\frac{\partial}{\partial \log \frac{1}{x}} \mathcal{F} = K(\gamma) \mathcal{F}$$

• Recall: DGLAP is an evolution equation for PDF $f_a(x,Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial(\log 1/x)$ conjugated to x

$$\gamma f_a = \frac{\partial}{\partial \log Q^2} f_a = [\Gamma(\omega)]_{ab} f_b \qquad \Rightarrow \qquad f_a = \frac{[\Gamma(\omega)]_{ab}}{\gamma} f_b$$

• BFKL is an evolution equation in x for unintegrated gluon PDF $\mathcal{F}(x, \mathbf{k}^2)$, and defines the kernel $K(\gamma)$, with $\gamma = \partial/\partial(\log \mathbf{k}^2)$ conjugated to \mathbf{k}^2

$$\omega \mathcal{F} = \frac{\partial}{\partial \log \frac{1}{x}} \mathcal{F} = K(\gamma) \mathcal{F} \qquad \Rightarrow \qquad \mathcal{F} = \frac{K(\gamma)}{\omega} \mathcal{F}$$

• Recall: DGLAP is an evolution equation for PDF $f_a(x,Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial(\log 1/x)$ conjugated to x

$$\gamma f_a = \frac{\partial}{\partial \log Q^2} f_a = [\Gamma(\omega)]_{ab} f_b \qquad \Rightarrow \qquad f_a = \frac{[\Gamma(\omega)]_{ab}}{\gamma} f_b$$

• BFKL is an evolution equation in x for unintegrated gluon PDF $\mathcal{F}(x, \mathbf{k}^2)$, and defines the kernel $K(\gamma)$, with $\gamma = \partial/\partial(\log \mathbf{k}^2)$ conjugated to \mathbf{k}^2

$$\omega \mathcal{F} = \frac{\partial}{\partial \log \frac{1}{x}} \mathcal{F} = K(\gamma) \mathcal{F} \qquad \Rightarrow \qquad \mathcal{F} = \frac{K(\gamma)}{\omega} \mathcal{F} \qquad \widehat{\mathcal{Q}}$$

• Using k-factorization, DGLAP evolution of the Green's function G corresponds to either ordered $k\gg k'\gg ...k_0$ or antiordered $k\ll k'\ll ...k_0$ momenta; BFKL incorporates all possible orderings (symm.)

$$\mathcal{F}_a = \mathcal{F}_a^{(0)} + \mathcal{K}_{ab} \otimes \mathcal{F}_b$$
, $a, b = \text{quark, gluon}$

$$\mathcal{F}_a = \mathcal{F}_a^{(0)} + \mathcal{K}_{ab} \otimes \mathcal{F}_b$$
, $a, b = \text{quark, gluon}$

At fixed α_s , our RG-improved matrix kernel is perturbatively expanded $\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s \mathcal{K}_0(\gamma, \omega) + \bar{\alpha}_s^2 \mathcal{K}_1(\gamma, \omega)$ and satisfies the minimal-pole assumption in the γ - and ω -expansions ($\gamma = 0 \leftrightarrow \text{ordered } k$'s)

$$\mathcal{K}(\bar{\alpha}_{s}, \gamma, \omega) = (1/\gamma) \, \mathcal{K}^{(0)}(\bar{\alpha}_{s}, \omega) + \mathcal{K}^{(1)}(\bar{\alpha}_{s}, \omega) + O(\gamma)$$
$$= (1/\omega) \, {}_{0}\mathcal{K}(\bar{\alpha}_{s}, \gamma) + {}_{1}\mathcal{K}(\bar{\alpha}_{s}, \gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ

$$\Gamma_0 = \mathcal{K}_0^{(0)}(\omega) , \qquad \Gamma_1 = \mathcal{K}_1^{(0)}(\omega) + \mathcal{K}_0^{(1)}(\omega) \Gamma_0(\omega) , \qquad \dots$$
$$\chi_0 = [{}_{0}\mathcal{K}_0(\gamma)]_{gg} , \qquad \chi_1 = [{}_{0}\mathcal{K}_1(\gamma) + {}_{0}\mathcal{K}_0(\gamma) {}_{1}\mathcal{K}_0(\gamma)]_{gg} , \qquad \dots$$

$$\mathcal{F}_a = \mathcal{F}_a^{(0)} + \mathcal{K}_{ab} \otimes \mathcal{F}_b$$
, $a, b = \text{quark, gluon}$

At fixed α_s , our RG-improved matrix kernel is perturbatively expanded $\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s \mathcal{K}_0(\gamma, \omega) + \bar{\alpha}_s^2 \mathcal{K}_1(\gamma, \omega)$ and satisfies the minimal-pole assumption in the γ - and ω -expansions ($\gamma = 0 \leftrightarrow \text{ordered } \mathbf{k}$'s)

$$\mathcal{K}(\bar{\alpha}_{s}, \gamma, \boldsymbol{\omega}) = (1/\gamma) \, \mathcal{K}^{(0)}(\bar{\alpha}_{s}, \boldsymbol{\omega}) + \mathcal{K}^{(1)}(\bar{\alpha}_{s}, \boldsymbol{\omega}) + O(\gamma)$$
$$= (1/\boldsymbol{\omega}) \, {}_{0}\mathcal{K}(\bar{\alpha}_{s}, \gamma) + {}_{1}\mathcal{K}(\bar{\alpha}_{s}, \gamma) + O(\boldsymbol{\omega})$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ

$$\Gamma_{0} = \mathcal{K}_{0}^{(0)}(\omega) , \qquad \Gamma_{1} = \mathcal{K}_{1}^{(0)}(\omega) + \mathcal{K}_{0}^{(1)}(\omega) \Gamma_{0}(\omega) , \qquad \dots$$

$$\chi_{0} = [{}_{0}\mathcal{K}_{0}(\gamma)]_{gg} , \qquad \chi_{1} = [{}_{0}\mathcal{K}_{1}(\gamma) + {}_{0}\mathcal{K}_{0}(\gamma) {}_{1}\mathcal{K}_{0}(\gamma)]_{gg} , \qquad \dots$$

• Such expressions are used to constrain K_0 and K_1 iteratively to yield the known NLO/NLx evolution, and approximate momentum conservation

$$\mathcal{F}_a = \mathcal{F}_a^{(0)} + \mathcal{K}_{ab} \otimes \mathcal{F}_b$$
, $a, b = \text{quark, gluon}$

At fixed α_s , our RG-improved matrix kernel is perturbatively expanded $\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s \mathcal{K}_0(\gamma, \omega) + \bar{\alpha}_s^2 \mathcal{K}_1(\gamma, \omega)$ and satisfies the minimal-pole assumption in the γ - and ω -expansions ($\gamma = 0 \leftrightarrow \text{ordered } \mathbf{k}$'s)

$$\mathcal{K}(\bar{\alpha}_{s}, \gamma, \omega) = (1/\gamma) \, \mathcal{K}^{(0)}(\bar{\alpha}_{s}, \omega) + \mathcal{K}^{(1)}(\bar{\alpha}_{s}, \omega) + O(\gamma)$$
$$= (1/\omega) \, {}_{0}\mathcal{K}(\bar{\alpha}_{s}, \gamma) + {}_{1}\mathcal{K}(\bar{\alpha}_{s}, \gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ

$$\Gamma_{0} = \mathcal{K}_{0}^{(0)}(\omega) , \qquad \Gamma_{1} = \mathcal{K}_{1}^{(0)}(\omega) + \mathcal{K}_{0}^{(1)}(\omega) \Gamma_{0}(\omega) , \qquad \dots$$

$$\chi_{0} = [{}_{0}\mathcal{K}_{0}(\gamma)]_{gg} , \qquad \chi_{1} = [{}_{0}\mathcal{K}_{1}(\gamma) + {}_{0}\mathcal{K}_{0}(\gamma) {}_{1}\mathcal{K}_{0}(\gamma)]_{gg} , \qquad \dots$$

- Such expressions are used to constrain K_0 and K_1 iteratively to yield the known NLO/NLx evolution, and approximate momentum conservation
- RG constraints in both ordered and antiordered collinear regions are met by the $\gamma \leftrightarrow 1 + \omega \gamma$ symmetry of the kernel.

$$\mathcal{K}_{0} = \begin{pmatrix}
\Gamma_{qq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg}^{0}(\omega)\chi_{c}^{\omega}(\gamma) \\
\Gamma_{gq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \left[\Gamma_{gg}^{0}(\omega) - \frac{1}{\omega}\right]\chi_{c}^{\omega}(\gamma) + \frac{1}{\omega}\chi_{0}^{\omega}(\gamma)
\end{pmatrix}
\begin{pmatrix}
\chi_{c}^{\omega}(\gamma) = \frac{1}{\gamma} + \frac{1}{1+\omega-\gamma} \\
\chi_{0}^{\omega}(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1+\omega-\gamma)
\end{pmatrix}$$

$$\begin{cases} \chi_{c}^{\omega}\left(\gamma\right) = \frac{1}{\gamma} + \frac{1}{1+\omega-\gamma} \\ \chi_{0}^{\omega}\left(\gamma\right) = 2\psi(1) - \psi(\gamma) - \psi(1+\omega-\gamma) \end{cases}$$

$$\mathcal{K}_{0} = \begin{pmatrix}
\Gamma_{qq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg}^{0}(\omega)\chi_{c}^{\omega}(\gamma) \\
\Gamma_{gq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \left[\Gamma_{gg}^{0}(\omega) - \frac{1}{\omega}\right]\chi_{c}^{\omega}(\gamma) + \frac{1}{\omega}\chi_{0}^{\omega}(\gamma)
\end{pmatrix}
\begin{pmatrix}
\chi_{c}^{\omega}(\gamma) = \frac{1}{\gamma} + \frac{1}{1+\omega-\gamma} \\
\chi_{0}^{\omega}(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1+\omega-\gamma)
\end{pmatrix}$$

- \mathcal{K}_0 has simple poles in γ (in χ_c^{ω} and χ_0^{ω}) and simple poles in ω in the gluon row
- No ω -poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at $\omega = -1$. We keep this structure also in \mathcal{K}_1

$$\mathcal{K}_{0} = \begin{pmatrix}
\Gamma_{qq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg}^{0}(\omega)\chi_{c}^{\omega}(\gamma) + \Delta_{qg}(\gamma,\omega) \\
\Gamma_{gq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \left[\Gamma_{gg}^{0}(\omega) - \frac{1}{\omega}\right]\chi_{c}^{\omega}(\gamma) + \frac{1}{\omega}\chi_{0}^{\omega}(\gamma)
\end{pmatrix}
\begin{pmatrix}
\chi_{c}^{\omega}(\gamma) = \frac{1}{\gamma} + \frac{1}{1+\omega-\gamma} \\
\chi_{0}^{\omega}(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1+\omega-\gamma)
\end{pmatrix}$$

- \mathcal{K}_0 has simple poles in γ (in χ_c^{ω} and χ_0^{ω}) and simple poles in ω in the gluon row
- No ω -poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at $\omega = -1$. We keep this structure also in \mathcal{K}_1
- At NLO Γ_{qq}^1 and Γ_{qg}^1 contain $\frac{\bar{\alpha}_s^2}{\omega}$. Instead of adding such terms in \mathcal{K}_1 (see above) we add a proper non-singular $\Delta_{qg}(\gamma,\omega)$ term
- \mathcal{K}_1 is obtained by adding NLO DGLAP matrix Γ_1 and NLx BFKL kernel χ_1 (in $\mathcal{K}_{1,gg}$) with the subtractions due to the γ and ω expansions explained before

$$\mathcal{K}_{0} = \begin{pmatrix} \Gamma_{qq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \Gamma_{qg}^{0}(\omega)\chi_{c}^{\omega}(\gamma) + \Delta_{qg}(\gamma,\omega) \\ \Gamma_{gq}^{0}(\omega)\chi_{c}^{\omega}(\gamma) & \left[\Gamma_{gg}^{0}(\omega) - \frac{1}{\omega}\right]\chi_{c}^{\omega}(\gamma) + \frac{1}{\omega}\chi_{0}^{\omega}(\gamma) \end{pmatrix} \qquad \begin{cases} \chi_{c}^{\omega}(\gamma) = \frac{1}{\gamma} + \frac{1}{1+\omega-\gamma} \\ \chi_{0}^{\omega}(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1+\omega-\gamma) \end{cases}$$

- \mathcal{K}_0 has simple poles in γ (in χ_c^{ω} and χ_0^{ω}) and simple poles in ω in the gluon row
- No ω -poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at $\omega = -1$. We keep this structure also in \mathcal{K}_1
- At NLO Γ_{qq}^1 and Γ_{qg}^1 contain $\frac{\bar{\alpha}_s^2}{\omega}$. Instead of adding such terms in \mathcal{K}_1 (see above) we add a proper non-singular $\Delta_{qg}(\gamma,\omega)$ term
- \mathcal{K}_1 is obtained by adding NLO DGLAP matrix Γ_1 and NLx BFKL kernel χ_1 (in $\mathcal{K}_{1,gg}$) with the subtractions due to the γ and ω expansions explained before
- In (k, x) space one has the $k \leftrightarrow k'$ and $x \leftrightarrow xk^2/k'^2$ symmetry of the matrix elements and running coupling is introduced, as suggested by the RG and/or the NLx BFKL kernel

$$\mathcal{K}(\boldsymbol{k}, \boldsymbol{k}'; x) = \bar{\alpha}_{s}(\boldsymbol{k}_{>}^{2})\mathcal{K}_{0}(\boldsymbol{k}, \boldsymbol{k}'; x) + \bar{\alpha}_{s}^{2}(\boldsymbol{k}_{>}^{2})\mathcal{K}_{1}(\boldsymbol{k}, \boldsymbol{k}'; x)$$

(the scale ${m k}^2_> \equiv \max({m k}^2,{m k}'^2)$ is replaced by $({m k}-{m k}')^2$ in front of the BFKL kernel χ_0^ω)

• Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\rm MS}$, e.g. $[\Gamma_1]_{qq} = (C_F/C_A)[\Gamma_1]_{qg}$ at NLx order $\alpha_{\rm s}^2/\omega$. They are satisfied at NLO/NLx accuracy

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\rm MS}$, e.g. $[\Gamma_1]_{qq} = (C_F/C_A)[\Gamma_1]_{qg}$ at NLx order $\alpha_{\rm s}^2/\omega$. They are satisfied at NLO/NLx accuracy
- A small violation would appear at NNLO: the simple- pole assumption in ω -space implies that $[\Gamma_2]_{gq} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2 , violated by (n_f/N_c^2) -suppressed terms ($\leq 0.5~\%$ for $n_f \leq 6$) in $\overline{\rm MS}$ (Moch, Vermaseren, Vogt 2004)

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\rm MS}$, e.g. $[\Gamma_1]_{qq} = (C_F/C_A)[\Gamma_1]_{qg}$ at NLx order $\alpha_{\rm s}^2/\omega$. They are satisfied at NLO/NLx accuracy
- A small violation would appear at NNLO: the simple- pole assumption in ω -space implies that $[\Gamma_2]_{gq} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2 , violated by (n_f/N_c^2) -suppressed terms ($\leq 0.5~\%$ for $n_f \leq 6$) in $\overline{\rm MS}$ (Moch, Vermaseren, Vogt 2004)
- Note a source of ambiguity: integrated PDF are defined at $\gamma \sim 0$, all ω ; but unintegrated ones are well defined by k-factorization around different ω values: $\omega \sim 0$ (gluon) and $\omega \sim -1$ (quark)
- We choose the NLO/NLx scheme: incorporates exact $\overline{\rm MS}$ anomalous dimension up to NLO and high-energy NLx BFKL kernel for the gluon channel

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\rm MS}$, e.g. $[\Gamma_1]_{qq} = (C_F/C_A)[\Gamma_1]_{qg}$ at NLx order $\alpha_{\rm s}^2/\omega$. They are satisfied at NLO/NLx accuracy
- A small violation would appear at NNLO: the simple- pole assumption in ω -space implies that $[\Gamma_2]_{gq} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2 , violated by (n_f/N_c^2) -suppressed terms ($\leq 0.5 \%$ for $n_f \leq 6$) in $\overline{\rm MS}$ (Moch, Vermaseren, Vogt 2004)
- Note a source of ambiguity: integrated PDF are defined at $\gamma \sim 0$, all ω ; but unintegrated ones are well defined by k-factorization around different ω values: $\omega \sim 0$ (gluon) and $\omega \sim -1$ (quark)
- We choose the NLO/NLx scheme: incorporates exact $\overline{\rm MS}$ anomalous dimension up to NLO and high-energy NLx BFKL kernel for the gluon channel
- Frozen coupling results are partly analytical, running coupling splitting functions obtained by a numerical deconvolution method.

Results: Hard Pomeron Exponent

Frozen- α_s exponent $\omega_s(\alpha_s)$. LO/NLx scheme has only gg entry in \mathcal{K}_1

- Modest decrease from n_f -dependence (running α_s not included)
- LO/NLx scheme joins smoothly the gluon-channel limit at $n_f = 0$

Effective Eigenvalue Functs $(n_f = 4)$

There are two, frozen α_s , resummed eigenvalue functions: $\omega = \chi_{\pm}(\alpha_s, \gamma)$ dual to the two anom. dim. eigenvalues $\gamma_{\pm}(\omega)$

- Fixed points at $\gamma=0,2$ and $\omega=1\Rightarrow$ momentum conservation in both collinear and anti-collinear limits.
- New subleading eigenvalue χ_{-}

Effective Eigenvalue Functs $(n_f = 0)$

- Modest n_f -dependence of $\chi_+(\alpha_s, \gamma)$.
- NLx-LO scheme recovers the known gluon-channel result (in agreement with Altarelli Ball Forte) at $n_f = 0$.
- Level crossing of χ_{-} and χ_{+} in the $n_f = 0$ limit.

Resummed Splitting Function Matrix

NLO⁺ scheme includes, besides NLO, also NNLO terms $\sim \alpha_{\rm s}^3/\omega^2$

Resummed Splitting Function Matrix

NLO⁺ scheme includes, besides NLO, also NNLO terms $\sim \alpha_{\rm s}^3/\omega^2$

- Infrared cutoff independence insures (matrix) collinear factorization
- At intermediate $x \simeq 10^{-3}$ resummed P_{gg} and P_{gq} show a shallow dip
- Small-x rise of novel P_{qg} and P_{qq} delayed down to $x \simeq 10^{-4}$
- Scale uncertainty band (0.25 $< x_{\mu}^2 < 4$) larger for the (small) P_{qa} entries

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - Splitting functions already (closely) in $\overline{\mathrm{MS}}$ scheme

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - Splitting functions already (closely) in $\overline{\rm MS}$ scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring "symmetry" and "minimal poles".

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - Splitting functions already (closely) in \overline{MS} scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring "symmetry" and "minimal poles".
- Hard Pomeron and leading eigenvalue function are stable, with modest n_f -dependence.
 - New subleading eigenvalue is obtained
- Resummed splitting functions P_{ga} show a shallow dip, small-x increase of P_{qa} delayed to $x \simeq 10^{-4}$. Overall, gentle matching of low order with resummation. Fast code ("user friendly" parameterization) soon available.

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - Splitting functions already (closely) in \overline{MS} scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring "symmetry" and "minimal poles".
- Hard Pomeron and leading eigenvalue function are stable, with modest n_f -dependence.
 - New subleading eigenvalue is obtained
- Resummed splitting functions P_{ga} show a shallow dip, small-x increase of P_{qa} delayed to $x \simeq 10^{-4}$. Overall, gentle matching of low order with resummation. Fast code ("user friendly" parameterization) soon available.
- Still need coefficient functions with comparable accuracy: take first LO impact factors with "exact kinematics"