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Why        ?

• Vanishes in the parton model: quarks spin 1/2, 
transverse momentum limited.

• Should be non-zero in QCD: gluon radiative 
corrections, transverse momentum grows with 

• Directly sensitive to the gluon density.

• Large higher twist effects (observed at large x).

• Extremely important to  see what happens at low x 
and low                       H1 talk!

Q2

FL

Q2
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Unified DGLAP/BFKL approach

• Simplest resummed model: set of two integral equations for 
the unintegrated gluon density and quark sea density.

• Gluons:

• BFKL with kinematical constraint

• DGLAP splitting function

• running coupling
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FIG. 1: Quark box diagrams in the photon-gluon fusion process used in the kT -factorization formula.

A. Equation for the unintegrated gluon density

In the KMS approach [12] one constructs the evolution
equation for the unintegrated gluon distribution function
which includes the leading order BFKL kernel with the
kinematical constraint and the DGLAP part of the split-
ting function. The solution to the leading order BFKL
equation is very well known [19]. It essentially gives very
fast growth of the gluon density with the decreasing value
of x, or the increasing center-of-mass energy. The solu-
tion can be recast into the symbolic form:

f(x, k2) ∼ x−λ , (10)

where k2 is the squared transverse momentum of the
gluon, x is Bjorken variable, and λ is the so-called inter-
cept of the hard Pomeron. This fast growth was shown
to be incompatible with the experimental data which ex-
hibit the effective intercept of about λ " 0.3 whereas the
BFKL solution gives the λ " 0.5.

The next-to-leading corrections to the BFKL equation
turned out to be very large [20–22] and it became im-

mediately apparent that the resummation of the series
is necessary. In the KMS approach one uses the lead-
ing logarithmic approximation for the BFKL kernel, but
with some substantial modifications. One of such mod-
ifications is the kinematical constraint [23, 24]. It was
demonstrated in [24] that the kinematical constraint ac-
counts for a large portion of the next-to-leading order
corrections. It is important to stress that this constraint
goes beyond the next-to-leading order in logarithms of x,
and is responsible for partial resummation of the small x
series [25]. Another modification introduced in the KMS
approach is the addition of the non-singular part in 1/z of
the Pgg(z) splitting function to the kernel. The singular
part is already included in the BFKL kernel. In a later
series of papers [26–28], see also [29–34], it was shown in
detail how these modifications generate the higher order
terms in the small x expansion.

The final equation in the KMS approach which takes
into account all the modifications mentioned above, has
the following form

f(x, k2) = f̃ (0)(x, k2) + αS(k2) k2
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where the strong coupling constant ᾱs ≡ αsNc/π. In the
above equation f(x, k2) is the unintegrated gluon dis-
tribution function which depends on x and the gluon
transverse momentum kT ≡ k. The first term is the
non-perturbative input to be specified below. The sec-
ond term of the above equation contains the leading log-
arithmic BFKL kernel with the kinematical constraint

given by the step function θ. The third term contains
the DGLAP splitting function Pgg(z) without the singu-
lar term in z, and the last term is the quark to gluon
contribution with Σ being the singlet quark distribution
function. The input function for this integral equation is

4

chosen to be

f̃ (0)(x, k2) =
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Note that the special form of the input is dictated by the
fact that eq. (11) only involves f(x, k2) in the perturba-
tive domain, k2 > k2

0 , where k2
0 is the non-perturbative

cutoff scale taken to be k2
0 = 1 GeV2. The gluon input

(12) is provided by the conventional, integrated gluon dis-
tribution xg(x, k2

0) at the scale k2
0 . This guarantees the

consistency with the DGLAP evolution since the input
in both approaches is exactly of the same. At the same
time, one avoids the necessity of parametrizing the un-
integrated gluon in the strictly non-perturbative regime,
k2 < k2

0 .

B. Equation for the singlet quark density

In the KMS approach the equation for the unintegrated
gluon density was supplemented by the second equation

for the quark density. These two equations formed the
coupled system of equations (similarly to the DGLAP
equations) for functions f(x, k2) and Σ(x, k2). The sea
quark contribution was evaluated from the kT factoriza-
tion theorem at small x
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(13)

where S(box)
q again describes the quark box contributions

shown in Fig. 1. S(box)
q implicitly includes an integration

over the quark transverse momentum κ. The exact ex-
pressions read
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where the momentum κ′ and the denominators D1q, D2q

as well as the gluon momentum fraction xg were defined
in Sec. II.

The singlet quark momentum distribution contains
both the sea and the valence quarks. The contribution
to the singlet quark distribution was calculated differ-
ently depending on the region of the transverse momenta.
There are three regions of interest:

1. non-perturbative region: k2, κ′2 < k2
0

2. strongly ordered region with low gluon transverse
momenta: k2 < k2

0 < κ′2

3. perturbative region: k2 > k2
0 .

In the non-perturbative regime, the sea contribution is
assumed to be dominated by the soft-Pomeron exchange.
This part is parametrized phenomenologically in the fol-
lowing form

S(soft)(x) = SP
u + SP

d + SP
s , (15)

with the soft pomeron contribution

SP
u = SP

d = 2SP
s = CP x−0.08(1 − x)8 . (16)

The second contribution comes from the region of small
transverse momenta of the gluon, k2 < k2

0 < κ′2. In this
region the strongly ordered approximation for the quark-
gluon transition is applied and the relevant contribution
is given by the following formula

S(coll)(x, Q2) =

∫ 1

x

dz

z
S(box)

q (z, k2 = 0, Q2)
x

z
g
(x

z
, k2

0

)

,

(17)
where the on-shell approximation, k2 = 0, is applied to

evaluate S(box)
q .

In the perturbative domain, k2 > k2
0 , the quark con-

tribution is evaluated from the kT factorization formula.
The final expression for the singlet quark distribution is
taken to be the sum of the contributions from the three
discussed regions

Σ = (S(soft)
uds +S(coll)

uds +S(k)
uds)+(S(coll)

c +S(k)
c )+V . (18)

Note that for the charm evaluation we did not use the
soft contribution since we assume that charm is generated
dynamically from gluons and that there is no soft or non-
perturbative charm contribution.

Using the kT factorization and all the terms discussed
above one finds the the final equation for the singlet dis-

non-perturbative input

J.Kwiecinski,
A.D.Martin,
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Unified DGLAP/BFKL approach
• Quarks:

•         factorization theorem

• Three different regions for quark and gluon momenta

• Non-perturbative (soft)

• Strongly ordered (low gluon momenta)

• Perturbative (high gluon momenta)

• Momentum sum rule
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FIG. 2: FL from the kT factorization approach. Dashed-dotted (black) line: contribution from the boson-gluon fusion box with
gluon transverse momenta k > k0; dashed (black) line: non-perturbative input from the gluons via collinear formula; dotted
(black) line: contribution from the quarks. Solid (red) line is the sum of all contributions. Gluon kinematics is exact.

tribution Σ in the KMS approach

Σ(x, k2) = S(soft)(x) +
∑

q

∫ a

x

dz

z
S(box)

q (z, k′2 = 0, k2; m2
q)

x

z
g

(x

z
, k2

0

)

+ V (x, k2) (19)
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,

where S(soft)(x) is given by eq. (15) and the uds subscript
indicates that the additional S → S term is only included
for the light quarks. This equation together with eq. (11)
for the unintegrated gluon distribution f are solved in the

KMS approach.
The final formula used for the calculation of the longi-

tudinal structure function FL from the kT factorization
formalism within the KMS approach reads

kT
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where the on-shell approximation, k2 = 0, is applied to

evaluate S(box)
q .

In the perturbative domain, k2 > k2
0 , the quark con-

tribution is evaluated from the kT factorization formula.
The final expression for the singlet quark distribution is
taken to be the sum of the contributions from the three
discussed regions

Σ = (S(soft)
uds +S(coll)

uds +S(k)
uds)+(S(coll)

c +S(k)
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Note that for the charm evaluation we did not use the
soft contribution since we assume that charm is generated
dynamically from gluons and that there is no soft or non-
perturbative charm contribution.
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calculated from      factorizationFL
6

FL(x, Q2) =
Q4

π2

∑
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. (20)

The cutoff for the gluon moment k2
0 = 1 GeV2 and the

gluon non-perturbative input was taken to be

yg(y, k2
0) = N(1 − y)β , (21)

with the parameters N = 1.57 and β = 2.5 fitted us-
ing the HERA data on the structure function F2. In the
forthcoming we discuss in detail the relation of the kT fac-
torization formula (20) to those from other approaches.

It is interesting to see what is the magnitude of the
separate contributions to FL. In Fig. 2 we show the
breakdown of FL into the contributions from gluons from
the boson-gluon box (first term in (20)), quarks (sec-
ond term) and the non-perturbative gluonic input (third
term).

The non-perturbative input stays nearly constant as
a function of x and Q2. At low x the dominant contri-

bution is from the gluon density in the kT factorization
framework. However, this contribution is small at larger
x, above 0.01 and at small values of Q2. This is due to
the kinematic effects, the phase space for the gluon emis-
sions shrinks in this regime. The quark contribution on
the other hand is non-negligible in the same regime.

IV. RELATION OF THE kT FACTORIZATION
TO OTHER APPROACHES

A. Relation of the kT factorization to the collinear
approach

The standard collinear formula for the longitudinal
structure function reads
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where g(y, Q2) is the integrated gluon distribution func-
tion. The longitudinal structure function thus has two
contributions: one originating from the gluons and the
second one which is originating from the quarks and is
proportional to F2. The quark masses in this formula are
neglected.

It is instructive to illustrate that the on-shell limit of
the kT factorization formula (1) is compatible with the
collinear factorization formula (22). By the on-shell limit
we mean the approximation in which the transverse mo-
mentum of the gluon k2 is much smaller than the virtu-
ality of the photon, k2 " Q2. To this aim, we start by
expanding the expression under the integral in eq. (1),
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in powers of k2/Q2. We retain only the leading term,
proportional to k2, and drop all the higher powers of k2.
Explicit expressions for the denominators D1q and D2q
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high momenta

quarks non-perturbative
6
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second one which is originating from the quarks and is
proportional to F2. The quark masses in this formula are
neglected.

It is instructive to illustrate that the on-shell limit of
the kT factorization formula (1) is compatible with the
collinear factorization formula (22). By the on-shell limit
we mean the approximation in which the transverse mo-
mentum of the gluon k2 is much smaller than the virtu-
ality of the photon, k2 " Q2. To this aim, we start by
expanding the expression under the integral in eq. (1),

1

2

(

1

D1q
−

1

D2q

)2

, (23)

in powers of k2/Q2. We retain only the leading term,
proportional to k2, and drop all the higher powers of k2.
Explicit expressions for the denominators D1q and D2q

read

D1q = κ′2 + 2(1 − β)κ′ · k + (1 − β)2k2

+ β(1 − β)Q2 + m2
q

D2q = κ′2 − 2βκ′ · k + β2k2 + β(1 − β)Q2 + m2
q .

After expanding the denominators in k2 we obtain

1

D1q
=

1

Dq
−

2(1 − β)κ′ · k

D2
q

+ O(k2) ,

1

D2q
=

1

Dq
+

2βκ′ · k

D2
q

+ O(k2) ,

where

Dq = κ′2 + β(1 − β)Q2 + m2
q , (24)

is independent of the gluon transverse momentum k.
Here we need to keep only terms linear in k. Therefore,
expression (23) expanded to the first order in k2 reads

(

1

D1q
−

1

D2q

)2

=
4 cos2φκ′2 k2

D4
q

. (25)
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II. FL FROM THE kT FACTORIZATION
APPROACH.

In the limit of the high center-of-mass energy, or equiv-
alently at small values of Bjorken x, the nucleon structure
functions can be computed from the kT factorization ap-
proach [3, 4]. Basic diagrams for the boson-gluon fusion

which are taken into account in the high energy limit are
depicted in Fig. 1. The gluon is off-shell with its virtu-
ality dominated by the transverse momentum kT ≡ k,
see Fig 1. Since we are interested in FL, the photon
is longitudinally polarized. Thus, in the kT factoriza-
tion approach the longitudinal structure function is then
given by

FL(x, Q2) = 2
Q4

π2

∑

q

e2
q

∫

dk2

k4

∫ 1

0
dβ

∫

d2
κ′ αs(µ

2)β2 (1 − β)2
1

2

(

1

D1q
−

1

D2q

)2

f
(x

z
, k2

)

, (1)

where the denominators, D1q and D2q, are given by

D1q = κ2 + β(1 − β)Q2 + m2
q , (2)

D2q = (κ − k)2 + β(1 − β)Q2 + m2
q . (3)

The quark transverse momentum κT ≡ κ, the shifted
transverse momentum κ′ = κ − (1 − β)k and the ar-
gument of the unintegrated gluon density f(x/z, k2) is
defined to be

x

z
≡ xg ≡ x

(

1 +
κ′2 + m2

q

β(1 − β)Q2
+

k2

Q2

)

. (4)

The variable β is the corresponding Sudakov parameter
appearing in the quark momentum decomposition

κ = xq p′ − β q′ + κ , (5)

xq = x

(

1 +
m2

q + κ2

(1 − β)Q2

)

, (6)

with the following light-like base vectors

p′ = p −
M2x

Q2
q , q′ = q + xp , (7)

where M denotes the nucleon mass, mq is the quark mass
which we keep nonzero only for charm quark, p is the
target-proton four-momentum and q is the virtual photon
four-momentum. The argument in the strong coupling
constant is taken to be

µ2 = κ′2 + k2 + m2
q . (8)

The integration over the gluon virtuality k2 in eq. (1)
needs special care in the low momenta region, k2 < k2

0 #
1 GeV2. We will discuss this important element of our
presentation in the forthcoming sections.

The function f(y, k2) is the unintegrated gluon distri-
bution. In the small x limit, it is related to the conven-
tional (integrated) gluon distribution g(y, µ2) by

yg(y, µ2) =

∫ µ2

dk2

k2
f(y, k2) . (9)

The integration limits in (1) are constrained by the con-
dition xg < 1 The condition xg > x is automatically sat-
isfied from eq. (4). We note that in the strict high-energy
limit the argument of the unintegrated gluon distribution
would be set to the Bjorken x. This is also the usual pro-
cedure in the dipole picture approach which we discuss
in Sec. IV. Here, we take into account the effects of exact
kinematics which results in the shift of the gluon xg to
larger values than x. This is related to the fact that the
energy needed to produce the qq̄ pair is non-negligible
even when the total center-of-mass energy is very large.
Although this effect is non-leading in the leading loga-
rithmic small x limit, it is nevertheless numerically quite
important as we will illustrate in Sec. V.

It also has been shown in the dipole picture that by in-
cluding the exact kinematics in the argument of the gluon
distribution, the transverse size of the quark-antiquark
dipole is no longer conserved [16, 17], see Sec. IVB.

III. UNIFIED DGLAP AND BFKL EQUATIONS

The main input to the kT factorization formula is the
unintegrated gluon distribution f(y, k2). At small x, this
distribution can be found from the solution to the BFKL
[5–7] or the CCFM equations [8–11]. These equations
give predictions for the unintegrated gluon density as a
function of the transverse momentum and x (and also the
external scale Q in case of CCFM) provided x Bjorken
is very small. The more rigorous approach which in-
cludes the operator definitions of the unintegrated gluon
densities was presented in [18]. Here, we will use the un-
integrated density obtained from the solution to the set
of unified BFKL and DGLAP equations, which includes
the resummation effects at small x. The full formalism,
called the KMS approach, was constructed in [12]. We
will review this approach in the next section.

exact gluon kinematics

3

kT

κT

kT

κT

FIG. 1: Quark box diagrams in the photon-gluon fusion process used in the kT -factorization formula.

A. Equation for the unintegrated gluon density

In the KMS approach [12] one constructs the evolution
equation for the unintegrated gluon distribution function
which includes the leading order BFKL kernel with the
kinematical constraint and the DGLAP part of the split-
ting function. The solution to the leading order BFKL
equation is very well known [19]. It essentially gives very
fast growth of the gluon density with the decreasing value
of x, or the increasing center-of-mass energy. The solu-
tion can be recast into the symbolic form:

f(x, k2) ∼ x−λ , (10)

where k2 is the squared transverse momentum of the
gluon, x is Bjorken variable, and λ is the so-called inter-
cept of the hard Pomeron. This fast growth was shown
to be incompatible with the experimental data which ex-
hibit the effective intercept of about λ " 0.3 whereas the
BFKL solution gives the λ " 0.5.

The next-to-leading corrections to the BFKL equation
turned out to be very large [20–22] and it became im-

mediately apparent that the resummation of the series
is necessary. In the KMS approach one uses the lead-
ing logarithmic approximation for the BFKL kernel, but
with some substantial modifications. One of such mod-
ifications is the kinematical constraint [23, 24]. It was
demonstrated in [24] that the kinematical constraint ac-
counts for a large portion of the next-to-leading order
corrections. It is important to stress that this constraint
goes beyond the next-to-leading order in logarithms of x,
and is responsible for partial resummation of the small x
series [25]. Another modification introduced in the KMS
approach is the addition of the non-singular part in 1/z of
the Pgg(z) splitting function to the kernel. The singular
part is already included in the BFKL kernel. In a later
series of papers [26–28], see also [29–34], it was shown in
detail how these modifications generate the higher order
terms in the small x expansion.

The final equation in the KMS approach which takes
into account all the modifications mentioned above, has
the following form

f(x, k2) = f̃ (0)(x, k2) + αS(k2) k2

∫ 1

x

dz

z

∫

k2
0

dk′2

k′2















f
(x

z
, k′2

)

Θ

(

k2

z
− k′2

)

− f
(x

z
, k2

)

|k′2 − k2|
+

f
(x

z
, k2

)

[4k′4 + k4]
1

2















+ αS(k2)

∫ 1

x

dz

z

(z

6
Pgg(z) − 1

)

∫ k2

k2
0

dk′2

k′2
f

(x

z
, k′2

)

+
αS(k2)

2π

∫ 1

x

dzPgq(z)Σ
(x

z
, k2

)

. (11)

where the strong coupling constant ᾱs ≡ αsNc/π. In the
above equation f(x, k2) is the unintegrated gluon dis-
tribution function which depends on x and the gluon
transverse momentum kT ≡ k. The first term is the
non-perturbative input to be specified below. The sec-
ond term of the above equation contains the leading log-
arithmic BFKL kernel with the kinematical constraint

given by the step function θ. The third term contains
the DGLAP splitting function Pgg(z) without the singu-
lar term in z, and the last term is the quark to gluon
contribution with Σ being the singlet quark distribution
function. The input function for this integral equation is

xg

kT

Charm quark density generated dynamically through the boson-gluon 
fusion with exact kinematics
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tribution Σ in the KMS approach

Σ(x, k2) = S(soft)(x) +
∑

q

∫ a

x

dz

z
S(box)

q (z, k′2 = 0, k2; m2
q)

x

z
g

(x

z
, k2

0

)

+ V (x, k2) (19)

+
∑

q

∫ ∞

k2
0

dk′2

k′2

∫ 1

x

dz

z
S(box)

q (z, k′2, k2; m2
q)f

(x

z
, k′2

)

+

∫ k2

k2
0

dk′2

k′2

αS(k′2)

2π

∫ 1

x

dz Pqq(z)Suds

(x

z
, k′2

)

,

where S(soft)(x) is given by eq. (15) and the uds subscript
indicates that the additional S → S term is only included
for the light quarks. This equation together with eq. (11)
for the unintegrated gluon distribution f are solved in the

KMS approach.
The final formula used for the calculation of the longi-

tudinal structure function FL from the kT factorization
formalism within the KMS approach reads

FL

Non-perturbative (low gluon momenta) 
term nearly constant.

Quark contribution non-negligible for 
lowest        and higher 

Gluon contribution (high momenta) 
strongly suppressed for 

Kinematics very important in this 
regime ( and not only!)

Q2 x > 0.01

x > 0.01
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II. FL FROM THE kT FACTORIZATION
APPROACH.

In the limit of the high center-of-mass energy, or equiv-
alently at small values of Bjorken x, the nucleon structure
functions can be computed from the kT factorization ap-
proach [3, 4]. Basic diagrams for the boson-gluon fusion

which are taken into account in the high energy limit are
depicted in Fig. 1. The gluon is off-shell with its virtu-
ality dominated by the transverse momentum kT ≡ k,
see Fig 1. Since we are interested in FL, the photon
is longitudinally polarized. Thus, in the kT factoriza-
tion approach the longitudinal structure function is then
given by

FL(x, Q2) = 2
Q4

π2

∑

q

e2
q

∫

dk2

k4

∫ 1

0
dβ

∫

d2
κ′ αs(µ

2)β2 (1 − β)2
1

2

(

1

D1q
−

1

D2q

)2

f
(x

z
, k2

)

, (1)

where the denominators, D1q and D2q, are given by

D1q = κ2 + β(1 − β)Q2 + m2
q , (2)

D2q = (κ − k)2 + β(1 − β)Q2 + m2
q . (3)

The quark transverse momentum κT ≡ κ, the shifted
transverse momentum κ′ = κ − (1 − β)k and the ar-
gument of the unintegrated gluon density f(x/z, k2) is
defined to be

x

z
≡ xg ≡ x

(

1 +
κ′2 + m2

q

β(1 − β)Q2
+

k2

Q2

)

. (4)

The variable β is the corresponding Sudakov parameter
appearing in the quark momentum decomposition

κ = xq p′ − β q′ + κ , (5)

xq = x

(

1 +
m2

q + κ2

(1 − β)Q2

)

, (6)

with the following light-like base vectors

p′ = p −
M2x

Q2
q , q′ = q + xp , (7)

where M denotes the nucleon mass, mq is the quark mass
which we keep nonzero only for charm quark, p is the
target-proton four-momentum and q is the virtual photon
four-momentum. The argument in the strong coupling
constant is taken to be

µ2 = κ′2 + k2 + m2
q . (8)

The integration over the gluon virtuality k2 in eq. (1)
needs special care in the low momenta region, k2 < k2

0 #
1 GeV2. We will discuss this important element of our
presentation in the forthcoming sections.

The function f(y, k2) is the unintegrated gluon distri-
bution. In the small x limit, it is related to the conven-
tional (integrated) gluon distribution g(y, µ2) by

yg(y, µ2) =

∫ µ2

dk2

k2
f(y, k2) . (9)

The integration limits in (1) are constrained by the con-
dition xg < 1 The condition xg > x is automatically sat-
isfied from eq. (4). We note that in the strict high-energy
limit the argument of the unintegrated gluon distribution
would be set to the Bjorken x. This is also the usual pro-
cedure in the dipole picture approach which we discuss
in Sec. IV. Here, we take into account the effects of exact
kinematics which results in the shift of the gluon xg to
larger values than x. This is related to the fact that the
energy needed to produce the qq̄ pair is non-negligible
even when the total center-of-mass energy is very large.
Although this effect is non-leading in the leading loga-
rithmic small x limit, it is nevertheless numerically quite
important as we will illustrate in Sec. V.

It also has been shown in the dipole picture that by in-
cluding the exact kinematics in the argument of the gluon
distribution, the transverse size of the quark-antiquark
dipole is no longer conserved [16, 17], see Sec. IVB.

III. UNIFIED DGLAP AND BFKL EQUATIONS

The main input to the kT factorization formula is the
unintegrated gluon distribution f(y, k2). At small x, this
distribution can be found from the solution to the BFKL
[5–7] or the CCFM equations [8–11]. These equations
give predictions for the unintegrated gluon density as a
function of the transverse momentum and x (and also the
external scale Q in case of CCFM) provided x Bjorken
is very small. The more rigorous approach which in-
cludes the operator definitions of the unintegrated gluon
densities was presented in [18]. Here, we will use the un-
integrated density obtained from the solution to the set
of unified BFKL and DGLAP equations, which includes
the resummation effects at small x. The full formalism,
called the KMS approach, was constructed in [12]. We
will review this approach in the next section.
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FIG. 3: Comparison between the kT factorization and collinear factorization predictions for FL as a function of Q2 for two
values of x: 10−3, (left) and 10−4 (right). The solid lines are the kT factorization prediction with exact kinematics, eq. (20),
while the dotted lines correspond to the dipole approximation, that is xg → x in the gluon density. The dashed lines show the
collinear factorization predictions, eqs. (37,38).

The integration d2κ′ can be written as 1
2dκ′2dφ and one

can perform the azimuthal integration over the angle φ.
The dependence on k2 is now only in the unintegrated
gluon distribution. Since we have assumed the strong or-
dering in the transverse momenta, we can easily perform
this integration using the following definition

yg(y, µ2) ≡

∫ µ2

dk2

k2
f(y, k2) . (26)

where the scale µ2 is of the order of Q2. Note that,
formally the integration over the k in (1) is over all scales.
However, we are expanding the kT factorization formula
for small values of k/Q, and therefore we assume that the
transverse momenta are small. Using the above relation
(26), we can rewrite the approximate form as

F (on−shell)
L (x, Q2) = 2

Q4

π

∑

q

e2
q

∫ 1

0
dβ

∫

dκ′2 αs(Q
2)

× β2(1 − β)2
κ′2

D4
q

yg(y, µ2) , (27)

where now

y ≡ x

(

1 +
κ′2 + m2

q

β(1 − β)Q2

)

, (28)

since we have dropped the ratio k2/Q2 in xg, eq. (4). It
is convenient to change the integration variables in (27)
from κ′2 to y,

κ′2 = β(1 − β)Q2
(y

x
− 1

)

− m2
q , (29)

Dq = β(1 − β)Q2 y

x
. (30)

It is important to carefully set the limits of integrations.
Using relation (29) we can write the inequality

β(1 − β)Q2
(y

x
− 1

)

− m2
q > 0 . (31)

Since 1 > β > 0, then

1

4
> β(1 − β) >

m2
qx

Q2(y − x)
. (32)

From inequality (32) we obtain the lower integration limit
for y

y > x

(

1 +
4m2

q

Q2

)

. (33)

It is convenient to make another change of variables:

β =
1

2
+ λ . (34)

Using the inequality (32) we obtain

−

√

1

4
−

m2
qx

Q2(y − x)
< λ <

√

1

4
−

m2
qx

Q2(y − x)
. (35)

Finally, we obtain the following expression for the on-
shell limit of the k factorization formula which reads

F (on−shell)
L (x, Q2) = 2

∑

q

e2
q

[

J (1)
q − 2

m2
q

Q2
J (2)

q

]

, (36) 8

where

J (1)
q =

αs

π

∫ 1

x̄q

dy

y

(

x

y

)2(

1 −
x

y

)

×

√

1 −
4m2

qx

Q2(y − x)
yg(y, Q2) , (37)

and

J (2)
q =

αs

π

∫ 1

x̄q

dy

y

(

x

y

)3

× ln





1 +
√

1 −
4m2

q
x

Q2(y−x)

1 −
√

1 −
4m2

q
x

Q2(y−x)



 yg(y, Q2) , (38)

with the lower cutoff on the integration equal to

x̄q = x

(

1 +
4m2

q

Q2

)

. (39)

Formula (36) together with eqs. (37) and (38) is the on-
shell approximation derived from the kT factorization in
the presence of the quark masses. In this derivation we
also assumed that the argument of the coupling constant
is equal to the external scale µ2 # Q2. It is straight-
forward to verify that the above expressions coincide
with the gluonic contribution of the standard massless
collinear formula (22) in the case when the quark masses
are vanishing. The collinear formula arises therefore as
a leading twist part of the kT factorization formula. The
second term in eq. (36) contains part of the higher twist
proportional to 1/Q2.

Let us emphasize that in order to obtain the consistent
limit of the kT factorization formula with the collinear
approach it was crucial to take the exact kinematics for
the argument of the gluon density, xg, see formulae (1),
(4) and (28).

B. Relation of the kT factorization to the dipole
approach

The dipole representation for the inclusive cross section
can be computed from the kT factorization formula. It is
obtained after the Fourier transformation of expression
(1) from the space of quark transverse momenta κ into
the the space of the transverse coordinats, r. It is im-
portant to note that one also needs to perform the small
x approximation in the argument of the gluon density in
formula (1),

xg → x . (40)

This is obviously justified only in the limit of very small
x or equivalently when the total center-of-mass energy is
very large. In this way the Fourier integrals over the κ

variable in (1) can be easily performed. The numerical
relevance of the above substitution in the kT factorization
formula is shown in Fig. 3.

In the case of the longitudinal structure function

FL =
Q2

4π2αem
σL , (41)

where the longitudinaly polarised photon-proton cross
section in the dipole representation reads

σL =
αem

π

∑

q

e2
q

∫

d2
r

∫ 1

0
dβ 4Q2β2 (1 − β)2K2

0 (Qr) ×

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) . (42)

Here k is the gluon transverse momentum, the variable

Q =
√

β(1 − β)Q2 + m2
q , (43)

K0 is the Bessel function and r is the transverse size
of the qq̄ pair. The expression with the integral over k

in eq. (42) is the elementary dipole-proton cross section,
σ̂, which characterizes the interaction of the qq̄ pair (a
dipole) with the proton

σ̂(x, r) ≡
2π

3

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) .

(44)
Notice that such a Fourier transformation is only possible
if the substitution (40) is done. Otherwise, by including
the exact kinematics in the argument of the gluon distri-

bution, the transverse size of the quark-antiquark dipole
is no longer conserved [16, 17, 35].

In [36] a systematic analysis of the twist expansion (i.e.
the expansion in powers of 1/Q2) in the dipole model ap-
proach was performed. Using the GBW saturation model
[37] for the dipole-proton cross section, a complete hierar-
chy of the twist series has been established. The analysis
has been extended in [38] to a saturation model which in-
cludes the DGLAP evolution [35]. The higher twist terms
are proportional to the nonlinear terms in the gluon den-
sity. Consequently the leading twist part is the term
which is linear in the gluon density. The leading twist-2
part in the dipole picture in the case of the cross section

8

where

J (1)
q =

αs

π

∫ 1

x̄q

dy

y

(

x

y

)2(

1 −
x

y

)

×

√

1 −
4m2

qx

Q2(y − x)
yg(y, Q2) , (37)

and

J (2)
q =

αs

π

∫ 1

x̄q

dy

y

(

x

y

)3

× ln





1 +
√

1 −
4m2

q
x

Q2(y−x)

1 −
√

1 −
4m2

q
x

Q2(y−x)



 yg(y, Q2) , (38)

with the lower cutoff on the integration equal to

x̄q = x

(

1 +
4m2

q

Q2

)

. (39)

Formula (36) together with eqs. (37) and (38) is the on-
shell approximation derived from the kT factorization in
the presence of the quark masses. In this derivation we
also assumed that the argument of the coupling constant
is equal to the external scale µ2 # Q2. It is straight-
forward to verify that the above expressions coincide
with the gluonic contribution of the standard massless
collinear formula (22) in the case when the quark masses
are vanishing. The collinear formula arises therefore as
a leading twist part of the kT factorization formula. The
second term in eq. (36) contains part of the higher twist
proportional to 1/Q2.

Let us emphasize that in order to obtain the consistent
limit of the kT factorization formula with the collinear
approach it was crucial to take the exact kinematics for
the argument of the gluon density, xg, see formulae (1),
(4) and (28).

B. Relation of the kT factorization to the dipole
approach

The dipole representation for the inclusive cross section
can be computed from the kT factorization formula. It is
obtained after the Fourier transformation of expression
(1) from the space of quark transverse momenta κ into
the the space of the transverse coordinats, r. It is im-
portant to note that one also needs to perform the small
x approximation in the argument of the gluon density in
formula (1),

xg → x . (40)

This is obviously justified only in the limit of very small
x or equivalently when the total center-of-mass energy is
very large. In this way the Fourier integrals over the κ

variable in (1) can be easily performed. The numerical
relevance of the above substitution in the kT factorization
formula is shown in Fig. 3.

In the case of the longitudinal structure function

FL =
Q2

4π2αem
σL , (41)

where the longitudinaly polarised photon-proton cross
section in the dipole representation reads

σL =
αem

π

∑

q

e2
q

∫

d2
r

∫ 1

0
dβ 4Q2β2 (1 − β)2K2

0 (Qr) ×

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) . (42)

Here k is the gluon transverse momentum, the variable

Q =
√

β(1 − β)Q2 + m2
q , (43)

K0 is the Bessel function and r is the transverse size
of the qq̄ pair. The expression with the integral over k

in eq. (42) is the elementary dipole-proton cross section,
σ̂, which characterizes the interaction of the qq̄ pair (a
dipole) with the proton

σ̂(x, r) ≡
2π

3

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) .

(44)
Notice that such a Fourier transformation is only possible
if the substitution (40) is done. Otherwise, by including
the exact kinematics in the argument of the gluon distri-

bution, the transverse size of the quark-antiquark dipole
is no longer conserved [16, 17, 35].

In [36] a systematic analysis of the twist expansion (i.e.
the expansion in powers of 1/Q2) in the dipole model ap-
proach was performed. Using the GBW saturation model
[37] for the dipole-proton cross section, a complete hierar-
chy of the twist series has been established. The analysis
has been extended in [38] to a saturation model which in-
cludes the DGLAP evolution [35]. The higher twist terms
are proportional to the nonlinear terms in the gluon den-
sity. Consequently the leading twist part is the term
which is linear in the gluon density. The leading twist-2
part in the dipole picture in the case of the cross section
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if the substitution (40) is done. Otherwise, by including
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bution, the transverse size of the quark-antiquark dipole
is no longer conserved [16, 17, 35].

In [36] a systematic analysis of the twist expansion (i.e.
the expansion in powers of 1/Q2) in the dipole model ap-
proach was performed. Using the GBW saturation model
[37] for the dipole-proton cross section, a complete hierar-
chy of the twist series has been established. The analysis
has been extended in [38] to a saturation model which in-
cludes the DGLAP evolution [35]. The higher twist terms
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II. FL FROM THE kT FACTORIZATION
APPROACH.

In the limit of the high center-of-mass energy, or equiv-
alently at small values of Bjorken x, the nucleon structure
functions can be computed from the kT factorization ap-
proach [3, 4]. Basic diagrams for the boson-gluon fusion

which are taken into account in the high energy limit are
depicted in Fig. 1. The gluon is off-shell with its virtu-
ality dominated by the transverse momentum kT ≡ k,
see Fig 1. Since we are interested in FL, the photon
is longitudinally polarized. Thus, in the kT factoriza-
tion approach the longitudinal structure function is then
given by

FL(x, Q2) = 2
Q4

π2

∑

q

e2
q

∫

dk2

k4

∫ 1

0
dβ

∫

d2
κ′ αs(µ

2)β2 (1 − β)2
1

2

(

1

D1q
−

1

D2q

)2

f
(x

z
, k2

)

, (1)

where the denominators, D1q and D2q, are given by

D1q = κ2 + β(1 − β)Q2 + m2
q , (2)

D2q = (κ − k)2 + β(1 − β)Q2 + m2
q . (3)

The quark transverse momentum κT ≡ κ, the shifted
transverse momentum κ′ = κ − (1 − β)k and the ar-
gument of the unintegrated gluon density f(x/z, k2) is
defined to be

x

z
≡ xg ≡ x

(

1 +
κ′2 + m2

q

β(1 − β)Q2
+

k2

Q2

)

. (4)

The variable β is the corresponding Sudakov parameter
appearing in the quark momentum decomposition

κ = xq p′ − β q′ + κ , (5)

xq = x

(

1 +
m2

q + κ2

(1 − β)Q2

)

, (6)

with the following light-like base vectors

p′ = p −
M2x

Q2
q , q′ = q + xp , (7)

where M denotes the nucleon mass, mq is the quark mass
which we keep nonzero only for charm quark, p is the
target-proton four-momentum and q is the virtual photon
four-momentum. The argument in the strong coupling
constant is taken to be

µ2 = κ′2 + k2 + m2
q . (8)

The integration over the gluon virtuality k2 in eq. (1)
needs special care in the low momenta region, k2 < k2

0 #
1 GeV2. We will discuss this important element of our
presentation in the forthcoming sections.

The function f(y, k2) is the unintegrated gluon distri-
bution. In the small x limit, it is related to the conven-
tional (integrated) gluon distribution g(y, µ2) by

yg(y, µ2) =

∫ µ2

dk2

k2
f(y, k2) . (9)

The integration limits in (1) are constrained by the con-
dition xg < 1 The condition xg > x is automatically sat-
isfied from eq. (4). We note that in the strict high-energy
limit the argument of the unintegrated gluon distribution
would be set to the Bjorken x. This is also the usual pro-
cedure in the dipole picture approach which we discuss
in Sec. IV. Here, we take into account the effects of exact
kinematics which results in the shift of the gluon xg to
larger values than x. This is related to the fact that the
energy needed to produce the qq̄ pair is non-negligible
even when the total center-of-mass energy is very large.
Although this effect is non-leading in the leading loga-
rithmic small x limit, it is nevertheless numerically quite
important as we will illustrate in Sec. V.

It also has been shown in the dipole picture that by in-
cluding the exact kinematics in the argument of the gluon
distribution, the transverse size of the quark-antiquark
dipole is no longer conserved [16, 17], see Sec. IVB.

III. UNIFIED DGLAP AND BFKL EQUATIONS

The main input to the kT factorization formula is the
unintegrated gluon distribution f(y, k2). At small x, this
distribution can be found from the solution to the BFKL
[5–7] or the CCFM equations [8–11]. These equations
give predictions for the unintegrated gluon density as a
function of the transverse momentum and x (and also the
external scale Q in case of CCFM) provided x Bjorken
is very small. The more rigorous approach which in-
cludes the operator definitions of the unintegrated gluon
densities was presented in [18]. Here, we will use the un-
integrated density obtained from the solution to the set
of unified BFKL and DGLAP equations, which includes
the resummation effects at small x. The full formalism,
called the KMS approach, was constructed in [12]. We
will review this approach in the next section.

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 10
2

F
L

k
T
 exact

x=0.001

collinear

k
T
 approx.

Q
2
(GeV

2
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 10
2

F
L

k
T
 exact

x=0.0001

collinear

k
T
 approx.

Q
2
(GeV

2
)

FIG. 3: Comparison between the kT factorization and collinear factorization predictions for FL as a function of Q2 for two
values of x: 10−3, (left) and 10−4 (right). The solid lines are the kT factorization prediction with exact kinematics, eq. (20),
while the dotted lines correspond to the dipole approximation, that is xg → x in the gluon density. The dashed lines show the
collinear factorization predictions, eqs. (37,38).

The integration d2κ′ can be written as 1
2dκ′2dφ and one

can perform the azimuthal integration over the angle φ.
The dependence on k2 is now only in the unintegrated
gluon distribution. Since we have assumed the strong or-
dering in the transverse momenta, we can easily perform
this integration using the following definition

yg(y, µ2) ≡

∫ µ2

dk2

k2
f(y, k2) . (26)

where the scale µ2 is of the order of Q2. Note that,
formally the integration over the k in (1) is over all scales.
However, we are expanding the kT factorization formula
for small values of k/Q, and therefore we assume that the
transverse momenta are small. Using the above relation
(26), we can rewrite the approximate form as

F (on−shell)
L (x, Q2) = 2

Q4

π

∑

q

e2
q

∫ 1

0
dβ

∫

dκ′2 αs(Q
2)

× β2(1 − β)2
κ′2

D4
q

yg(y, µ2) , (27)

where now

y ≡ x

(

1 +
κ′2 + m2

q

β(1 − β)Q2

)

, (28)

since we have dropped the ratio k2/Q2 in xg, eq. (4). It
is convenient to change the integration variables in (27)
from κ′2 to y,

κ′2 = β(1 − β)Q2
(y

x
− 1

)

− m2
q , (29)

Dq = β(1 − β)Q2 y

x
. (30)

It is important to carefully set the limits of integrations.
Using relation (29) we can write the inequality

β(1 − β)Q2
(y

x
− 1

)

− m2
q > 0 . (31)

Since 1 > β > 0, then

1

4
> β(1 − β) >

m2
qx

Q2(y − x)
. (32)

From inequality (32) we obtain the lower integration limit
for y

y > x

(

1 +
4m2

q

Q2

)

. (33)

It is convenient to make another change of variables:

β =
1

2
+ λ . (34)

Using the inequality (32) we obtain

−

√

1

4
−

m2
qx

Q2(y − x)
< λ <

√

1

4
−

m2
qx

Q2(y − x)
. (35)

Finally, we obtain the following expression for the on-
shell limit of the k factorization formula which reads

F (on−shell)
L (x, Q2) = 2

∑

q

e2
q

[

J (1)
q − 2

m2
q

Q2
J (2)

q

]

, (36)
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with the following light-like base vectors
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where M denotes the nucleon mass, mq is the quark mass
which we keep nonzero only for charm quark, p is the
target-proton four-momentum and q is the virtual photon
four-momentum. The argument in the strong coupling
constant is taken to be

µ2 = κ′2 + k2 + m2
q . (8)

The integration over the gluon virtuality k2 in eq. (1)
needs special care in the low momenta region, k2 < k2
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1 GeV2. We will discuss this important element of our
presentation in the forthcoming sections.

The function f(y, k2) is the unintegrated gluon distri-
bution. In the small x limit, it is related to the conven-
tional (integrated) gluon distribution g(y, µ2) by

yg(y, µ2) =

∫ µ2

dk2

k2
f(y, k2) . (9)

The integration limits in (1) are constrained by the con-
dition xg < 1 The condition xg > x is automatically sat-
isfied from eq. (4). We note that in the strict high-energy
limit the argument of the unintegrated gluon distribution
would be set to the Bjorken x. This is also the usual pro-
cedure in the dipole picture approach which we discuss
in Sec. IV. Here, we take into account the effects of exact
kinematics which results in the shift of the gluon xg to
larger values than x. This is related to the fact that the
energy needed to produce the qq̄ pair is non-negligible
even when the total center-of-mass energy is very large.
Although this effect is non-leading in the leading loga-
rithmic small x limit, it is nevertheless numerically quite
important as we will illustrate in Sec. V.

It also has been shown in the dipole picture that by in-
cluding the exact kinematics in the argument of the gluon
distribution, the transverse size of the quark-antiquark
dipole is no longer conserved [16, 17], see Sec. IVB.

III. UNIFIED DGLAP AND BFKL EQUATIONS

The main input to the kT factorization formula is the
unintegrated gluon distribution f(y, k2). At small x, this
distribution can be found from the solution to the BFKL
[5–7] or the CCFM equations [8–11]. These equations
give predictions for the unintegrated gluon density as a
function of the transverse momentum and x (and also the
external scale Q in case of CCFM) provided x Bjorken
is very small. The more rigorous approach which in-
cludes the operator definitions of the unintegrated gluon
densities was presented in [18]. Here, we will use the un-
integrated density obtained from the solution to the set
of unified BFKL and DGLAP equations, which includes
the resummation effects at small x. The full formalism,
called the KMS approach, was constructed in [12]. We
will review this approach in the next section.
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J (1)
q =

αs

π
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y
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)2(
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y
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×

√
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4m2
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Q2(y − x)
yg(y, Q2) , (37)

and

J (2)
q =

αs

π
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y

(
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)3
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 yg(y, Q2) , (38)

with the lower cutoff on the integration equal to

x̄q = x

(

1 +
4m2

q

Q2

)

. (39)

Formula (36) together with eqs. (37) and (38) is the on-
shell approximation derived from the kT factorization in
the presence of the quark masses. In this derivation we
also assumed that the argument of the coupling constant
is equal to the external scale µ2 # Q2. It is straight-
forward to verify that the above expressions coincide
with the gluonic contribution of the standard massless
collinear formula (22) in the case when the quark masses
are vanishing. The collinear formula arises therefore as
a leading twist part of the kT factorization formula. The
second term in eq. (36) contains part of the higher twist
proportional to 1/Q2.

Let us emphasize that in order to obtain the consistent
limit of the kT factorization formula with the collinear
approach it was crucial to take the exact kinematics for
the argument of the gluon density, xg, see formulae (1),
(4) and (28).

B. Relation of the kT factorization to the dipole
approach

The dipole representation for the inclusive cross section
can be computed from the kT factorization formula. It is
obtained after the Fourier transformation of expression
(1) from the space of quark transverse momenta κ into
the the space of the transverse coordinats, r. It is im-
portant to note that one also needs to perform the small
x approximation in the argument of the gluon density in
formula (1),

xg → x . (40)

This is obviously justified only in the limit of very small
x or equivalently when the total center-of-mass energy is
very large. In this way the Fourier integrals over the κ

variable in (1) can be easily performed. The numerical
relevance of the above substitution in the kT factorization
formula is shown in Fig. 3.

In the case of the longitudinal structure function

FL =
Q2

4π2αem
σL , (41)

where the longitudinaly polarised photon-proton cross
section in the dipole representation reads

σL =
αem

π

∑

q

e2
q

∫

d2
r

∫ 1

0
dβ 4Q2β2 (1 − β)2K2

0 (Qr) ×

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) . (42)

Here k is the gluon transverse momentum, the variable

Q =
√

β(1 − β)Q2 + m2
q , (43)

K0 is the Bessel function and r is the transverse size
of the qq̄ pair. The expression with the integral over k

in eq. (42) is the elementary dipole-proton cross section,
σ̂, which characterizes the interaction of the qq̄ pair (a
dipole) with the proton

σ̂(x, r) ≡
2π

3

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) .

(44)
Notice that such a Fourier transformation is only possible
if the substitution (40) is done. Otherwise, by including
the exact kinematics in the argument of the gluon distri-

bution, the transverse size of the quark-antiquark dipole
is no longer conserved [16, 17, 35].

In [36] a systematic analysis of the twist expansion (i.e.
the expansion in powers of 1/Q2) in the dipole model ap-
proach was performed. Using the GBW saturation model
[37] for the dipole-proton cross section, a complete hierar-
chy of the twist series has been established. The analysis
has been extended in [38] to a saturation model which in-
cludes the DGLAP evolution [35]. The higher twist terms
are proportional to the nonlinear terms in the gluon den-
sity. Consequently the leading twist part is the term
which is linear in the gluon density. The leading twist-2
part in the dipole picture in the case of the cross section
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where

J (1)
q =

αs

π

∫ 1

x̄q

dy

y

(

x

y

)2(

1 −
x

y

)

×

√

1 −
4m2

qx

Q2(y − x)
yg(y, Q2) , (37)

and

J (2)
q =

αs

π

∫ 1

x̄q

dy

y

(

x

y

)3

× ln





1 +
√

1 −
4m2

q
x

Q2(y−x)

1 −
√

1 −
4m2

q
x

Q2(y−x)



 yg(y, Q2) , (38)

with the lower cutoff on the integration equal to

x̄q = x

(

1 +
4m2

q

Q2

)

. (39)

Formula (36) together with eqs. (37) and (38) is the on-
shell approximation derived from the kT factorization in
the presence of the quark masses. In this derivation we
also assumed that the argument of the coupling constant
is equal to the external scale µ2 # Q2. It is straight-
forward to verify that the above expressions coincide
with the gluonic contribution of the standard massless
collinear formula (22) in the case when the quark masses
are vanishing. The collinear formula arises therefore as
a leading twist part of the kT factorization formula. The
second term in eq. (36) contains part of the higher twist
proportional to 1/Q2.

Let us emphasize that in order to obtain the consistent
limit of the kT factorization formula with the collinear
approach it was crucial to take the exact kinematics for
the argument of the gluon density, xg, see formulae (1),
(4) and (28).

B. Relation of the kT factorization to the dipole
approach

The dipole representation for the inclusive cross section
can be computed from the kT factorization formula. It is
obtained after the Fourier transformation of expression
(1) from the space of quark transverse momenta κ into
the the space of the transverse coordinats, r. It is im-
portant to note that one also needs to perform the small
x approximation in the argument of the gluon density in
formula (1),

xg → x . (40)

This is obviously justified only in the limit of very small
x or equivalently when the total center-of-mass energy is
very large. In this way the Fourier integrals over the κ

variable in (1) can be easily performed. The numerical
relevance of the above substitution in the kT factorization
formula is shown in Fig. 3.

In the case of the longitudinal structure function

FL =
Q2

4π2αem
σL , (41)

where the longitudinaly polarised photon-proton cross
section in the dipole representation reads

σL =
αem

π

∑

q

e2
q

∫

d2
r

∫ 1

0
dβ 4Q2β2 (1 − β)2K2

0 (Qr) ×

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) . (42)

Here k is the gluon transverse momentum, the variable

Q =
√

β(1 − β)Q2 + m2
q , (43)

K0 is the Bessel function and r is the transverse size
of the qq̄ pair. The expression with the integral over k

in eq. (42) is the elementary dipole-proton cross section,
σ̂, which characterizes the interaction of the qq̄ pair (a
dipole) with the proton

σ̂(x, r) ≡
2π

3

∫

d2k

k4
αsf(x, k2)(1 − e−ir·k)(1 − eir·k) .

(44)
Notice that such a Fourier transformation is only possible
if the substitution (40) is done. Otherwise, by including
the exact kinematics in the argument of the gluon distri-

bution, the transverse size of the quark-antiquark dipole
is no longer conserved [16, 17, 35].

In [36] a systematic analysis of the twist expansion (i.e.
the expansion in powers of 1/Q2) in the dipole model ap-
proach was performed. Using the GBW saturation model
[37] for the dipole-proton cross section, a complete hierar-
chy of the twist series has been established. The analysis
has been extended in [38] to a saturation model which in-
cludes the DGLAP evolution [35]. The higher twist terms
are proportional to the nonlinear terms in the gluon den-
sity. Consequently the leading twist part is the term
which is linear in the gluon density. The leading twist-2
part in the dipole picture in the case of the cross section

dipole cross section

small x approximation
replaces the argument of the 

gluon density: gluon is 
longitudinally soft

xg =
x

z
−→ x

9



factorization vs collinear 
approach and dipole model 

kT

kT factorization
 + exact kinematics

collinear approach dipole model

xg =
x

z
−→ xk2 ! Q2

factorization contains both limitskT
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FIG. 5: Comparison between the collinear and the kT factorization calculations with exact gluon kinematics. The data are from
the ZEUS experiment [2]. The light quarks u, d, s are treated as massless, the charm quark mass is set to be mc = 1.5 GeV. The
solid (red) line denotes the calculation using the k factorization with exact kinematics, the black (dashed) line is calculation
using the collinear factorization with the massive charm quark.
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FIG. 6: Comparison between the collinear and the kT factorization calculations with exact gluon kinematics. The data are
from H1 experiment [1]. The light quarks u, d, s are treated as massless, the charm quark mass is set to be mc = 1.5 GeV.
The solid-red line denotes the calculation using the kT factorization with exact kinematics, the black-dashed line is calculation
using the collinear factorization with the massive charm quark.

H1 ZEUS

Differences between       and collinear approaches 
are small for       in this kinematic regime.

kT
FL

This is different than        , where differences are typically large.F2

Collinear gluon also 
includes resummation 

at small x
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values of x: 10−3, (left) and 10−4 (right). The solid lines are the kT factorization prediction with exact kinematics, eq. (20),
while the dotted lines correspond to the dipole approximation, that is xg → x in the gluon density. The dashed lines show the
collinear factorization predictions, eqs. (37,38).

The integration d2κ′ can be written as 1
2dκ′2dφ and one

can perform the azimuthal integration over the angle φ.
The dependence on k2 is now only in the unintegrated
gluon distribution. Since we have assumed the strong or-
dering in the transverse momenta, we can easily perform
this integration using the following definition

yg(y, µ2) ≡

∫ µ2

dk2

k2
f(y, k2) . (26)

where the scale µ2 is of the order of Q2. Note that,
formally the integration over the k in (1) is over all scales.
However, we are expanding the kT factorization formula
for small values of k/Q, and therefore we assume that the
transverse momenta are small. Using the above relation
(26), we can rewrite the approximate form as

F (on−shell)
L (x, Q2) = 2

Q4

π

∑

q

e2
q

∫ 1

0
dβ

∫

dκ′2 αs(Q
2)

× β2(1 − β)2
κ′2

D4
q

yg(y, µ2) , (27)

where now

y ≡ x

(

1 +
κ′2 + m2

q

β(1 − β)Q2

)

, (28)

since we have dropped the ratio k2/Q2 in xg, eq. (4). It
is convenient to change the integration variables in (27)
from κ′2 to y,

κ′2 = β(1 − β)Q2
(y

x
− 1

)

− m2
q , (29)

Dq = β(1 − β)Q2 y

x
. (30)

It is important to carefully set the limits of integrations.
Using relation (29) we can write the inequality

β(1 − β)Q2
(y

x
− 1

)

− m2
q > 0 . (31)

Since 1 > β > 0, then

1

4
> β(1 − β) >

m2
qx

Q2(y − x)
. (32)

From inequality (32) we obtain the lower integration limit
for y

y > x

(

1 +
4m2

q

Q2

)

. (33)

It is convenient to make another change of variables:

β =
1

2
+ λ . (34)

Using the inequality (32) we obtain

−

√

1

4
−

m2
qx

Q2(y − x)
< λ <

√

1

4
−

m2
qx

Q2(y − x)
. (35)

Finally, we obtain the following expression for the on-
shell limit of the k factorization formula which reads

F (on−shell)
L (x, Q2) = 2

∑

q

e2
q

[

J (1)
q − 2

m2
q

Q2
J (2)

q

]

, (36)

Differences between       and collinear approaches 
are small for       in this kinematic regime.

kT
FL

However,       dependence different for the      
factorization and collinear.kT

Q2

Q2 dependence
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FIG. 7: Comparison between the exact and the approximate (dipole like) kinematics in the kT factorization formula. The
data are from the ZEUS experiment [2]. The light quarks u, d, s are treated as massless, the charm quark mass is set to be
mc = 1.5 GeV. The solid (red) line denotes the calculation using the kT factorization with exact kinematics; the dotted ( blue)
line is calculation using the kT factorization with the approximate kinematics.
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are from H1 experiment [1]. The light quarks u, d, s are treated as massless, the charm quark mass is set to be mc = 1.5 GeV.
The solid, red line denotes the calculation using the kT factorization with exact kinematics; the blue, dotted line is calculation
using the kT factorization with the approximate (dipole-like) kinematics.

H1 ZEUS

Differences are non-negligible 
even in the small x regime.

10

two different factorization schemes. The only regime
where the results differ is the very small x and high Q2

region, where the kT factorization with exact kinemat-
ics tends to give higher values, as well as the region of
small Q2 < 10 GeV2 where the kT factorization-based
approach falls below collinear one. This is better illus-
trated in Fig. 3 where we demonstrate the FL structure
function for two values of x = 10−3, 10−4 as a function
of Q2. The appreciable difference between the two ap-
proaches is visible in the region of high Q2 > 100 GeV2.
The calculation based on the kT factorization approach
has distinctively steeper Q2 dependence.

This result is consistent with the previous observations
[39]. The significant difference between the high energy
and the collinear factorization is known to be more pro-
nounced for the transverse structure function [12].

We stress though the importance of the exact kinemat-
ics in the evaluation of the gluon density. The collinear
and kT factorization approaches give very similar results
only in the case when the gluon density is evaluated at
xg in the kT factorization formula. In Fig. 7 and Fig. 8
we show also the calculation where in the kT factoriza-
tion the argument of the gluon density has been put to
be equal to the Bjorken x. Clearly the results which
do not take into account the exact kinematics are much
higher than with the exact kinematics. This is under-
standable as we are taking into account that finite en-
ergy has been used for the production of the qq̄ pair. As
a result the argument xg of the gluon density is larger
than the x Bjorken. We see that the differences are quite
pronounced, they are typically larger than the differences
between the collinear and the kT factorization with the
exact kinematics. The differences are also visible in the
plots of FL as a function of Q2. It is interesting that the
differences do not seem to vanish as a function of Q2.
This difference can be of course accounted for by chang-
ing the gluon density. The results for FL and F2 structure
functions can be made consistent within the two calcula-
tions (with and without exact kinematics) at the expense
of having different normalizations for the gluon density.

We have checked that the contribution from the kT

factorization which is proportional to the gluon density
is about 2 − 4 times smaller with the exact kinematics
than the approximate calculation. We have found that
the approximate kinematics yields similar results when
the xg of the gluon is taken to be

xg " 5.7 x ,

with the proportionality coefficient being the slowly vary-
ing function of Q2.

In Fig. 9 we present the comparison of the kT and
collinear factorizations for low values of Q2, between 2
and 8 GeV2. We see that the two computations differ

more in this region. The lowest values are given by the
kT factorization approach with exact kinematics while
the highest values are given by the calculations with ap-
proximate kinematics. At the lowest Q2 = 2 GeV2 bin
the differences seem to be smaller. This is due to the
fact that in this region the calculation is dominated by
the contribution of the quarks and the non-perturbative
input which is the same in the kT and the collinear fac-
torization formulae in our approach. The range in x has
been extended down to x = 10−6 to cover the LHeC
kinematic region.

In the lowest Q2 region the quark contribution and the
non-perturbative gluonic component becomes dominant.
This is why the differences between the exact and the
approximate kinematics are starting to become smaller
in this region as the whole FL gets larger contribution
from the quarks which are treated in the same way in
both of these calculations.

In the larger x region, below 10−3, we observe that the
kinematical effects are more significant. Interestingly the
gluon contribution originating from kT > k0 at x " 0.01
is very small for the scales up to about Q2 = 10 GeV2

and this region is completely dominated by the quark and
the non-perturbative contribution. Therefore using the
approximate kinematics leads to the large overestimate
of the perturbative gluon contribution in this region.

We first use the collinear factorization formula with
non-zero quark masses, given by Eqs. (36), (37) and (38)
and compute the longitudinal structure function using
the integrated gluon density obtained from the unified
KMS evolution equations. In Figs. 10 and 11 we show
the results of the calculations for the longitudinal struc-
ture function as a function of x for different values of the
photon virtuality Q2. The two curves correspond to the
sum of all quark contributions to FL (solid line) and the
charm component to the calculation (dashed line). The
light u, d, s quarks are treated as massless, the charm
quark mass is taken to be mc = 1.5 GeV. The calcu-
lation denoted by the solid line includes also the quark
component, which is the second term in Eq.(22), propor-
tional to F2. The charm contribution to the longitudinal
structure function constitutes about 30%. In both figures
we compare the results with the data from the ZEUS [2]
and H1 collaborations [1].
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effective x of the gluon
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Low        regionQ2

Comparison with the H1 preliminary low Q2 data

Good agreement with the data at low Q2 too.
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Extrapolations to lower x: LHeC 
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FIG. 9: Comparison between the collinear and the kT factorization calculations for low values of Q2. The range in x covers the
LHeC kinematic range. The light quarks u, d, s are treated as massless, the charm quark mass is set to be mc = 1.5GeV. The
solid (red) line denotes the calculation using the kT factorization with exact kinematics; the dotted (blue) line is calculation
using the kT factorization with approximate kinematics and the dashed (black) line is the calculation using the collinear
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Kinematic effects important even for 
lowest values of x.

Can compensate for the difference by 
changing the normalization of the 

gluon density.

Using approximate (dipole-like) 
kinematics, forces the gluon density to 

be smaller. 

This is important if one wants to 
study saturation effects.
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Summary: 

• Unintegrated gluon distribution from unified DGLAP/BFKL.

• High energy factorization with exact gluon kinematics contains 
both collinear and dipole approach.

• In the HERA kinematics regime collinear and        factorization 
give similar results for         .  Agreement with HERA data.

• Kinematic effects significant, dipole model underestimates the 
gluon density. Effective 

Outlook: 

• Unified approach close to Ciafaloni-Colferai-Salam-Stasto 
resummation approach. Extend to obtain unintegrated gluon 
distribution function from CCSS resummation.

• Applications of unintegrated resummed densities at LHC.

xg ! 5.7x

kT
FL
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