
Beam instrumentation 
developments for CLIC/HL-LHC

Stewart T. Boogert (Alexey Lyapin, Pavel Karataev, Konstantin 
Kruchinin & Stephen Gibson)

John Adams Institute at Royal Holloway



Talk outline 

• CLIC developments

− Cavity beam position monitors

• Goal to reach CLIC requirements with cavity triplet at CALIFES

− Optical transition radiation

• Project at ATF2  

• HL-LHC electro-optic beam position monitors
− Current status of experiment at SPS

− Potential development at CALIFES

• General BI potential 
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Cavity BPM R&D : CTF Hardware
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Photos of installed BPMs on beamline



Photos of installed movers and electronics



Signal processing

• 2 types of analysis used: Digital Down-Conversion (DDC) and Principal Component 
Analysis

• In both cases use a basis of windowed 2 orthogonal sin/cos-like signals

• DDC: Gaussian window, positioned arbitrarily

• PCA: Signal-derived window

DDC (sin/cos with gaussian filter) PCA components



BPM Calibration 

• Find the phase corresponding to the position

• Determine the position scale
• Use mover stages to ensure pure position offset (no angle) and high 

precision

• Currently 8-bit digitiser, so the dynamic range is reduced

DDC calibration PCA calibration



BPM Resolution 

• Still commissioning BPM triplet (compare DDC and 
PCA to determine resolution for single BPM)
− 6.2 um spread without a position cut

− 3.3 um spread with a +/-50 um position cut

Wide range calibration(1 mm) Narrow range calibration(100 um)



Optical Transition Radiation



Optical Transition Radiation (OTR)
Optical Diffraction Radiation (ODR)
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Aim:
• Develop a high resolution single shot beam size and emittance diagnostics station:

o Non-invasive beam size measurement using Optical Diffraction Radiation;
o Sub-micrometer beam size diagnostics using Optical Transition Radiation;

• Simple in use, robust technique for CLIC and ILC



OTR/ODR Experimental layout



OTR Measurements

OTR images

Beam size effect Calibration



OTR Results

Emittance Measurement

CalibrationQuadrupole scan

Quadrupole scan calibrated



ODR Measurements

ODR is generated when a charged particle moves through a slit in a metal screen in vacuum

ODR imaging: gives an 
opportunity to diagnose the beam 
position wrt to the slit center with 
micron-scale accuracy

ODR angular distribution: gives an opportunity 
to diagnose the beam size.
These measurements were done for 30 micron 
predicted beam size



Electro-optic BPM
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Aim to develop novel diagnostics capable of rapidly (< 50 ps) 
monitoring transverse intra-bunch perturbations for the HL-LHC.

Essential a button BPM with pick-ups replaced by electro-optic                                       
crystals:
– laser + detectors are away from the accelerator, readout via a 160m optical fibre. Not 

limited by cable bandwidth.

The electric field from a passing relativistic bunch of charged particle interacts with a 
birefringent (polarization sensitive) crystal.

P A 
Grin lens 

EO 
crystal 

P A 
Grin lens 

EO 
crystal 

bunch 

beam pipe 

from laser 
to detector 2 

from laser 
to detector 1 (a)!

The 1ns LHC particle bunch induces a change in the 
polarization of laser light in the crystal, so the beam 
position along the bunch can be monitored.
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way, the load on Level-2 will be diminished and extra re-
sources will be available for more advanced selection al-
gorithms, which ultimately could improve the b-tagging,
lepton identification, etc.

Suggestions are also in place for combining trigger ob-
jects at Level-1 (topological triggers) and for implement-
ing full granularity readout of the calorimeter. The latter
will strongly improve the triggering capabilities for elec-
trons and photons at Level-1.

5 ATLAS Upgrade: Phase-II

The ATLAS Phase-II upgrade is scheduled for 2022 and
2023. During this time, LHC will be out of operation for
furnishing with new inner triplets and crab cavities. As a
result, an instantaneous luminosity of 5 ⇥ 1034 cm�2s�1

should be achieved. The goal is to accumulate 3000 fb�1

of data by ⇤ 2030.
ATLAS Phase-II preparations include a new Inner De-

tector and further trigger and calorimeter upgrades.

5.1 New Inner Detector

Running at nominalLpeak for the LHC , will bring, on av-
erage, ⇤ 28 primary interactions (pile-up events) per bunch
crossing, every 25 ns. The number of pile-up events at
5⇥1034 cm�2s�1 is therefore expected to be ⇤ 140. (Should
luminosity levelling not be fully e�ective or some other
scheme adopted, 7⇥1034 cm�2s�1 should at least be accom-
modated.) This will result in 5 to 10 times higher detec-
tor occupancies, which is beyond the TRT design param-
eters. Furthermore, by 2022, the Pixel and the SCT sub-
systems, would seriously degrade their performance due
to the radiation damage of their sensors and FE electron-
ics. Because of all these factors, ATLAS has decided to re-
place the entire Inner Detector with a new, all-silicon Inner
Tracker (ITk). The ITk must satisfy the following criteria
(w.r.t. ID): higher granularity, improved material budget,
increased radiation resistivity of the readout components.
At the moment, the ITk project is in an R&D phase. Dif-
ferent geometrical layouts are simulated and their perfor-
mance is studied in search for the optimal tracker archi-
tecture. A major constraint on the design is the available
space, defined by the volume taken by the ID in ATLAS.
This implies a maximum radius of ⇤ 1 m and the limiting
existing gaps for services.

The current baseline design of the ITk, depicted in Fig.
3, consists of 4 Pixel and 5 Si-strip layers in the barrel part.
The two endcap regions are each composed of 6 Pixel and
5 Si-strip double-sided disks, built of rings of modules. The
pixel modules are with identical pixels of size 50⇥250 µm,
whereas the Si-strip modules come in two types, with short
(24 mm) and long (96 mm) strips. As in the current SCT,
the Si-strip modules are designed to be of 2 pairs of silicon
microstrip sensors, glued back-to-back at an angle of 40
mrad to provide 2D space-points.

Intensive R&D studies are also in process to select the
most suitable pixel sensor technology out of Si-planar, 3D
and diamond, and to find the optimal layout of the Si-strip
modules [8].

Fig. 3. The baseline layout of the new Inner Detector, traversed by
simulated 23 pile-up events (left) and 230 pile-up events (right).

5.2 Calorimeter and trigger upgrades

The HL-LHC conditions will have a major impact on the
Calorimetry system. To ensure an adequate performance,
a replacement of the cold electronics inside the LAr Ha-
dronic endcap, as well as, a replacement of all on-detector
readout electronics for all calorimeters may need to be an-
ticipated. Also, the operation of the Forward Calorimeter
(FCal) could be compromised. To maintain the FCal func-
tioning at the HL-LHC, two possible solutions are consid-
ered [7]: first, complete replacement of the FCal, and sec-
ond, installation of a small warm calorimeter, Mini-FCal,
in front of the FCal. The Mini-Fcal would reduce the ion-
ization and heat loads of the FCal to acceptable levels.

The planned trigger upgrades for Phase-II, are con-
nected with implementing a Track Trigger at Level-1/Level-
2, applying full granularity of calorimeter at Level-1 and
improving the muon trigger coverage.

6 Conclusions

ATLAS collaboration has devised a detailed program to re-
flect the changes in the LHC conditions towards the High-
Luminosity LHC, characterized by high track multiplicity
and extreme fluences. At each of the 3 phases of the up-
grade program, actions will be undertaken to reassure the
stable and e⇥cient performance of the ATLAS detector.
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Example development: Electro-Optic Beam Position Monitor



Installation of EO-BPM in CERN SPS

Location selected next to SPS for prototype development: 
– allows tests with proton bunch parameters closest to HL-LHC
– installed next to existing Head-Tail monitor (stripline BPM) for 

comparison and triggering.

However, access is extremely limited, due to LHC schedule
– Installed EO-BPM body + first pick-up & optics in February 2016, 

just before SPS closed.

– Next opportunity for access was 24hr Technical Stop in June 2016. 

New
EO-BPM

Existing
HT monitor

SPS



Installation of EO-BPM in CERN SPS

Remaining three pick-ups and second optics box installed in TS on 7th June.

Laser installed / optics aligned in 8hr access during TS on 14th September 2016.

Next opportunity for SPS access is 2017 shutdown…

Mirrors&
Mirrors&

Pickup&

Knife&Edge&Prism&

3D&Fiber&Stage&&

Collimator&

HWP&

Analyzer&

Polarizing&Plate&
SpliBer&

LiNbO3&

Prototype	EO-BPM	installed	in	the	CERN	SPS.	
Opposing	horizontal	pick-ups	are	each	
equipped	with	adjacent,	optical	breadboards.

Internal	view	of	the	fibre-coupled,	polarization	optics.



Challenge of prototype at CERN SPS

An excellent opportunity for tests with LHC bunches, however, SPS 
is a challenging environment for such prototype development work:
– Only < 36 hrs access, since installation in February 2016.

Overcome by use of remote controlled optics, though not without 
issues:

– Need to drive stages over long distances.
– Requires radiation tolerant components 

(optics + stages without optical encoders).
– Minimal adjustment possible due to risk 

of losing fibre coupling alignment

Sparse opportunities for intervention to adjust setup or replace parts:

Allowed radius of beam pipe is much larger than LHC: less signal expected

Beam tests are parasitic to SPS operation: no direct control of beam.

Trains of high intensity bunches (1.1.x1011 protons/ bunch) available typically only for a 
short times during LHC injection.

5 
The CERN Roadmap 
Frédérick Bordry  
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A test stand for parallel EO-BPM development:

What would be the ideal test area?

In a surface building with relative ease of access for quick reconfiguration of beam-
line components.

Dedicated test stand: not an accelerator required for LHC operation.

Ability to break the vacuum to reconfigure pick-ups, without impact on accelerator 
operations.

Direct control over delivered beam parameters:
– Adjustable bunch intensity.
– Varied bunch /train structure to check FFT of signal
– Steerable beam to pick-up.

Availability of bunch timing for triggering.

Some possible areas:
– HiRadMat: 450GeV protons, upto 288 bunches 25ns with 3 1013 protons/pulse.
– CALIFES:

• 200 MeV electrons, similar g as on SPS

• Single bunch to trains with similar bunch spacing as at LHC (1ns, 5ns, 25ns, 50 ns).
• Short bunches possible (few ps) for fast EO-tests.



Summary

• Potential to continue developments of high precision electron beam 
instrumentation

• Beam position monitors  (high resolution/bandwidth, applications for FELs, electron 
beam driven plasma wake acceleration)

• Beam size and emittance measurement using OTR and ODR

• Resolution limit systems (<1 um impossible at CALIFES, but OTRI, debugging of systems 
before installation at ATF/CesrTA etc)

• Other beam instrumentation  related to X-band FEL and ILC

• Proof of principle tests of HL-LHC beam instrumentation possible

• Access to facility important!

• Vibrant and diverse activity group at the JAI@RHUL to contribute to 
BI activities at a future Califes facility.  


