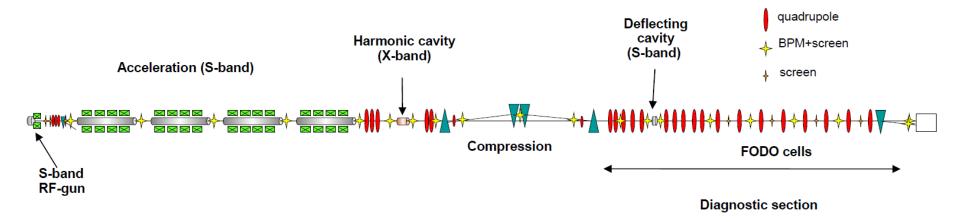

Sven Reiche:: SwissFEL Beam Dynamics :: Paul Scherrer Institut

Studies at the SwissFEL Injector Test Facility

Insert the occasioCALIFES Workshop, Oct 2016



X-ray FEL Facilities and Their Test Facilities

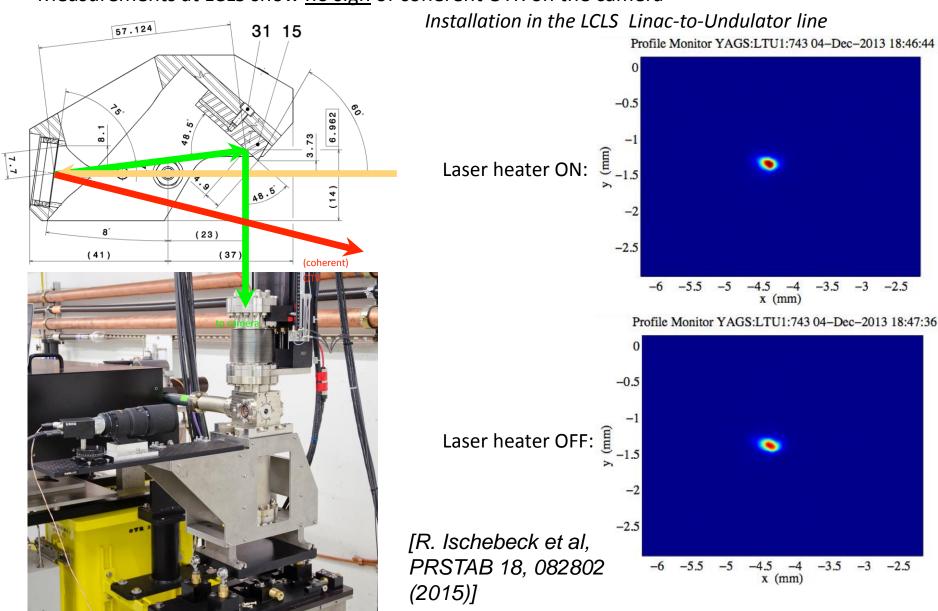
SwissFEL Injector Test Facility

- Goals
 - Demonstrate beam quality needed for SwissFEL
 - Demonstrate preserved beam qualities after compression
 - Demonstrate performance of new diagnostics
 - Test in-vacuum undulator U15 and demonstrate FEL amplification
- Operation 2010-2014

Summary of beam physics studies at SITF

Beam and lattice characterization procedures

- Transverse beam characterization
 - Symmetric single-quad scan [E. Prat, NIMA 743, 103 (2014)]
 - 4D measurements [E. Prat and M. Aiba, PRSTAB 17, 052801 (2014)]
 - Beam-size free optics measurements [M. Aiba et al, NIMA 753, 24 (2014)]
 - SwissFEL profile monitor [R. Ischebeck et al, PRSTAB 18, 082802 (2015)]
- Longitudinal beam characterization and time-resolved measurements
 - Measurement of bunch length (TD) and beam slice parameters with transverse deflector and dispersion method [E. Prat and M. Aiba, PRSTAB 17, 032801 (2014)]


Beam physics results

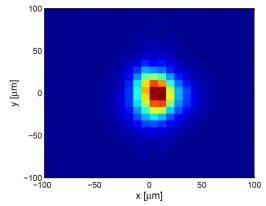
- Cathode (thermal/intrinsic) emittance measurements:
 - Wavelength dependence [M. C. Divall et al, PRSTAB 18, 033401 (2015)]
 - Gradient dependence [E. Prat et al, PRSTAB 18, 063401 (2015)]
 - Copper vs cesium telluride [E. Prat et al, PRSTAB, 043401 (2015)]
- Optimization of uncompressed beam:
 - Measurements [E. Prat et al, PRSTAB 17, 104401 (2014)]
 - Automatic optimization [S. Bettoni et al, PRSTAB 18, 123404 (2015)]
- Emittance preservation at compression [S. Bettoni et al, PRAB 19, 034402 (2016)]
- Further measurements:
 - Passive "streaker" [S. Bettoni et al, PRAB 19, 021304 (2016)]
 - Beam tilts meas. and correction [M. Guetg et al, PRSTAB 18, 030701 (2015)]
 - Comparison FODO vs quad-scan measurements [M. Yan et al, FEL14, 941 (2015)]

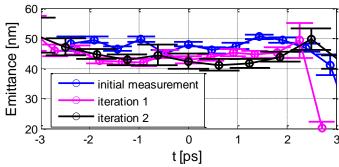
Measurements at LCLS (December 2013)

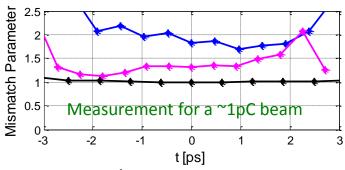
Measurements at LCLS show <u>no sign</u> of coherent OTR on the camera

Emittance resolution, errors and matching

- ☐ SwissFEL profile monitor (YAG)
 - Beam size resolution is ~15 μm, equivalent to an emittance resolution of 1-3 nm (E=250MeV)
 - ☐ Signal to noise ratio is good enough to measure slice emittance for bunch charges of less than 1pC


Errors

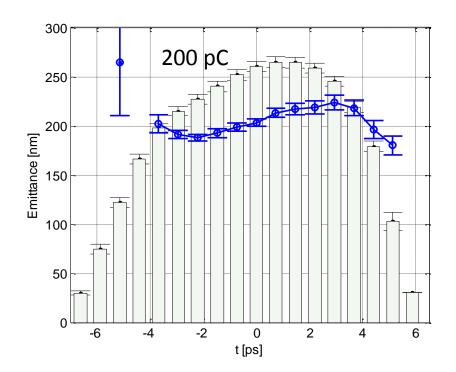

- Statistical errors from beam size variations (what is shown in the error bars of the measurements). For 5% of beam size measurement error this is below 3% (if $\Delta\mu_x$ =10deg).
- Systematic errors expected to be below 5%:
 - Screen calibration (~1%→~2%) and resolution
 - > Energy and quadrupole field errors (<1%)
 - Optics mismatch
 - Others (e.g. errors associated to Gauss fit)

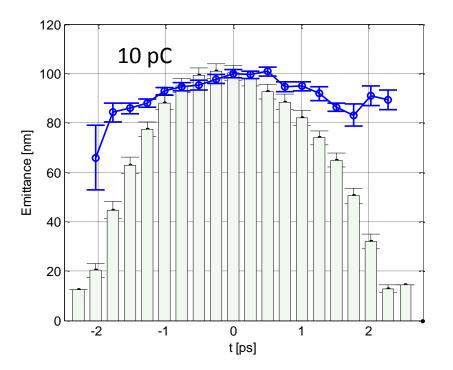

Matching

- Beam core is always matched to exclude errors due to optics mismatch
- Matching of the core works normally in 1-2 iterations
- Successful matching gives us confidence in the obtained emittance values

Beam image close to screen resolution limit

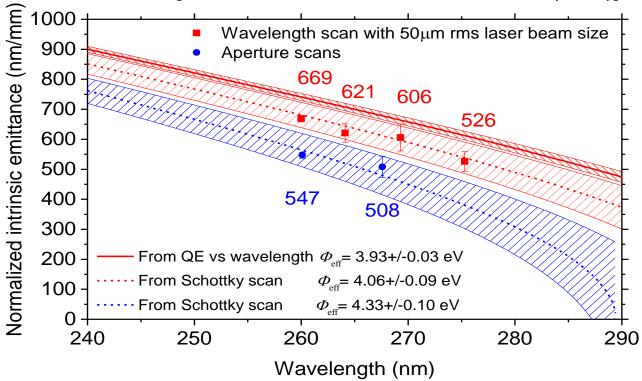
$$M = \frac{1}{2} (\beta \gamma_D - 2\alpha \alpha_D + \gamma \beta_D)$$


Optimum emittances


We have achieved the following emittances

[E. Prat et al, PRSTAB 17, 104401 (2014)]

	200 pC	10 pC
Projected emittance	~0.30 μm	~0.15 μm
Slice emittance	~0.20 μm	~0.10 μm


- These emittance values fulfill the SwissFEL requirements
- Emittance values are stable in short-term and optimum settings are reproducible
- Emittance is preserved for compressed bunches after careful adjustment of the optics

Wavelength dependence: summary

[M. C. Divall et al, PRSTAB 18, 033401 (2015)]

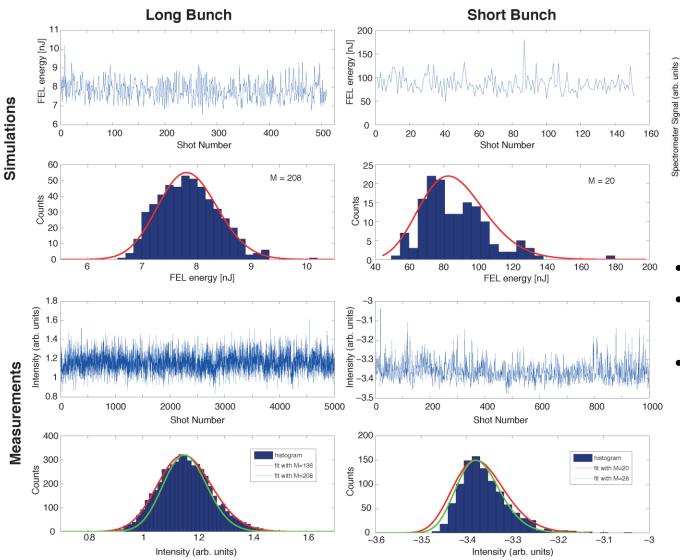
- ➤ Measurements agree well with expected work functions
- \succ Wavelength dependence as expected by theory $|\mathcal{E}_{th}|/|\sigma_l| \propto \sqrt{\phi_l}$
- Wavelength-scans and Schottky-scans can be used to reconstruct the normalized thermal emittances
- > Same cathode show different work function after one month of operation

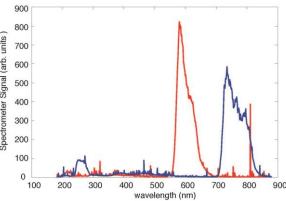
Summary of thermal emittance measurements

Material	Meas. day	$ε_{th}/\sigma_l$ (μm/mm)	Laser wave. (nm)	Cathode field (MV/m)	$arepsilon_{th}/\sigma_{l}$ (norm. *) (µm/mm)
Cu-3	31-10-2012	0.55±0.01	260.1	49.9	0.53±0.01
Cu-3	30-10-2012	0.51±0.04	267.6	49.9	0.57±0.04
Cu-19	25-09-2013	0.44 ± 0.02	262.0	49.9	0.44 ± 0.02
Cu-19	25-09-2013	0.37±0.03	262.0	34.8	0.40 ± 0.03
Cu-19	27-09-2013	0.35 ± 0.03	262.0	16.4	0.43 ± 0.03
Cu-19	04-04-2014	0.40 ± 0.03	262.0	49.9	0.40 ± 0.03
Cu-22	13-04-2014	0.58 ± 0.03	262.0	76	0.54 ± 0.03
Cs ₂ Te-8	04-04-2014	0.54±0.06	262.0	49.9	0.54±0.06
Cs ₂ Te-17	08-04-2014	0.54 ± 0.01	266.6	76.0	0.54±0.01
Cs ₂ Te-17	08-04-2014	0.50±0.02	266.6	76.0	0.51±0.02
Cs ₂ Te-17	08-04-2014	0.52±0.02	266.6	76.0	0.53±0.02

Wavelength dependence
Cathode field dependence
Cs₂Te measurements

Measurements at other labs


Cu: ~0.9 μm/mm [H. J. Qian et al, PRSTAB 15, 040102 (2012)], [Y. Ding et al, PRL. 102, 254801 (2009)]


 $Cs_2Te: > 1 \mu m/mm$ [F. Stephan et al., PRSTAB 13, 020704 (2010)]

(*) Normalized to 262 nm and 50 MV/m

First FEL in Switzerland

- Test of U15 undulator
- Very little diagnostics (YAG screen, spectrometer)
- Good agreement with numerical model though no further insight into beam parameters.

Lessons learnt from SITF

- "The injector is moved as it is to SwissFEL" has become obsolete:
 - Emittance optimization requires a longer drift between gun and first RF structures
 - Laser heater was not implemented yet
 - Active correction with quads, skew quads and sextupoles in chicane added
 - Dedicated FODO lattice for diagnostics is impractical (required length, resolution problems on screen, multiple screens, space charge effects increased)
 - Increase of nominal beam energy of first compression stage and longer bunch compressor
 - Cu-cathode and pulse stacking is major cause of microbunching.
 - Tunability in gun laser wavelength for smaller thermal emittances is not worth the effort with respect to increased operation cost and stability.
 - Design of large good field region for chicane magnets causes huge stray field
 - In efficient matching before compressor (high k₁ values and beam chirp)

Things, which could have been studied...

- New Gun Design (C-Band gun)
- Laser Seeding at 50 nm (HHG vs HGHG vs EEHG)
- Non-linear compression
- Advanced phase-space manipulation with wakes
- Measurement of intrinsic energy spread, Coulomb scattering in the gun.
- More longitudinal diagnostics (invasive and non-invasive)
- Beam based THz generation (moved to FLUTE/KIT)
- Microbunch gain curve

Some will be measured at SwissFEL, though in the future it is foreseen to rebuilt SITF in a reduced form, mostly for Gun and RF testing.

Acknowledgement

Thanks to the SITF Team:
 M. Pedrozzi, M. Aiba, E.
 Prat, S. Bettoni, T.
 Schietinger, R. Ischebeck, B.
 Keil, M. Duval, A. Triserio, C.
 Viccario and many more...

