Undulator-based THz source

Jürgen Pfingstner

4. October 2016

Overview

- 1. Introduction
- 2. Comb beam generation
- Test scenario for CALIFES
- 2. Conclusions

1. Introduction

THz source for SwissFEL

Motivation:

- Vibrations within the material lattice occur manly in the THz regime:
 - Free electrons (plasmon)
 - Lattice vibrations (phonon)
 - Spin coupling (magnon)
 - ...
- To study these effects,
 material excitation with THz source.

Request from material scientists:

$$-f_{THz} = 1 - 20 \text{ THz } (\lambda_{THz} = 300 - 15 \mu\text{m})$$

$$-E_{\rho} \approx 100 \mu J$$

$$-$$
 Δω/ω₀ < 10% (pref. 5%)

Phase locked

$$- f_{rep} = 100$$
Hz

Option 1: THz source based on wakefield modulation

Principle:

- Energy modulation via wakefield of dielectric structure.
- Conversion into intensity modulation via bunch compressor.
- 3. Energy extraction via a second structure (PETS principle).

Tuning:

Advantages:

- Bunch of SwissFEL would be used for source.
- Construction and operation cost is nearly negligible.

Studied by Simona Bettoni

Option 2: Undulator-based THZ source

Undulator parameter:

• Challenge to go to so large λ_{THz} .

$$\lambda_{THz} = \frac{\lambda_u}{2\gamma^2} (1 + K_0^2)$$

- Helical undulator (symmetric strong natural focusing).
- $\gamma = 50$ ($E_b = 25$ MeV, space charge).
- $\lambda_u = 6$ cm (compactness).
- $K_0 = 0.75 4.9$ (for tuning); equals to $B_0 = 0.09T 0.88T$.
- Q = 1nC charge necessary.

Phase locking:

- SASE: easy, but no phase locking.
- **Seeding:** THz lasers not quite strong enough.

Comb beam: create bunching before undulator.

2. Comb beam generation

Longitudinal phase space

- · after gun
- after drift
- · after S-band
- · after WF & lineariser
 - Longitudinal phase space is complicated because of long comb pulse:
 - Long. space charge smearing.
 - RF curvature.
 - Variable RF compression.
 - Charge dependence.
 - At SPARC experiment with 2 or 4 bunches, here 16 bunches.
 - Challenge to find a setup with equally spaced bunches at undulator.

Operational considerations

- A setup for a uniform charge profile has been found:
 - 1nC, 20 pulses, 10° gun phase, $R_{56} = -3.5$ cm

- It will be difficult enough to create a proper bunching at one frequency.
- Proposition to keep tuning manageable:
 - Keep beam setting before bunch compressor fixed.
 - Separation of linearisation and compression: no dogleg with sextupoles.
- But this will create only one specific bunching (see next slide).

Frequency tuning

- Tuning with variable R_{56} of BC (pulse length change).
- Re-bunching only achieved for very limited frequency range.
- Undulator simulations show that also a not re-bunched beam can be used,
 since the remaining energy modulation converts to bunching in undulator.
- Challenges of a compression with factor 1 20:
 - With current setup, frequency range still limited to 1-4 THz, since energy modulation will smear too much above.
 - To increase range, an strong increase of the energy chirp would help, since smaller R_{56} can be used. This would be in general beneficial for the challenging bunch compression of a factor 20.
 - Also, higher-order non-linearities may become a problem at one point.

3. Test scenario for CALIFES

Facility layout

Tuning:

- BC1: Variable R₅₆ to bring bunch to right length (frequency).
- ACC2, ACC3: phase change can be used to dechirper, but additional acceleration is at the moment unavoidable.
- BC2: creates bunching by tilting up the energy spread from longitudinal space charge.

New hardware:

Limitation:

- Comb laser system.
- X-band lineariser.
- BC1 between ACC1 and ACC2.
- BC2.
- CTR diagnostics.
- If ACC2, ACC3 could be freely tuned, THz could be created in undulator.

UV laser stacking

Laser stacking principle:

- Birefringent crystal (α-BBO).
- Different indices of refraction in different directions.
- Vertically and horizontally polarised light will be differently delayed.
- 2mm crystal = 1ps delay.

4 α -BBO with different lengths that are 45° rotated w.r.t. to each other.

Full laser facility

- Cathodes needs UV laser pulse.
- 3x up-conversion from IR laser
- For 1Thz Pulse length must be
 ≈0.5ps FWHM.
- Problem: Current Nd:YAG system≈8-10ps. We need Ti:Sa system!
- Baseline 1THz. Could it be increased to 5Thz (see next slide)?

Taken from L. Yan, IPAC10, WEPD051.

Bunch compressor specification

- Limit for compression factor C:
 - Removal of energy chirp after compression.
 - Initial energy spread.
- Maximal C≈5.
 - This already assumes ϕ_{RF} =90° in ACC2 and ACC3.
 - General limitation for tuning range.

Bunch compressor:

- L = 0.75m.
- $\Theta = 15^{\circ}$.
- $\Delta \varepsilon_{x.CSR} = 1.7\%$.
- No estimate for second BC yet.

How could 1-20 THz be reached at all?

- Full range at once seems impossible.
- Two laser and gun setups: 1 and 5 THz.
- Tune with BC with C=1-5.
- Laser pulse length < 100 fs FWHM

Diagnostics

- At SPARC a the following system has been used.
- CTR due to a metal coated foil.
- Interferometer creates autocorrelation function
- Scanning measurement.

Autocorrelation measurement

Taken from E. Chiadroni et al, IPAC11 THPS101

150

4. Conclusions

- Two THz source concept for the SwissFEL under study.
- Report on the comb-beam undulator-based THz source.

Challenges:

- To get a uniform enough longitudinal phase space.
- At SPAC with max. 4 bunches. Here with 16 bunches.
- Additionally, bunch length should be tuned without destroying energy modulation.
- It would be necessary to test these concept, since it is a significant step w.r.t. performed experiments.

Additional equipment:

- Comb laser system (new Ti:Sa laser), X-band lineariser, 2xBC, CTR diagnostics,
- Preferable individual RF setting for ACC1, ACC2

Thank you for your attention!