A THz source based on CALIFES

Alessandro Curcio Ph.D student

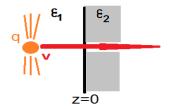
Supervisors: M. Petrarca and D. Giulietti

In collaboration for THz activity with:

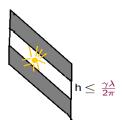
S. Lupi, SBAI Sapienza Universita' di Roma

E. Chiadroni, INFN LNF

Sapienza Universita' di Roma and INFN LNF



Introduction


THZ source parameters

Possible experiments and conclusions

THz emission as Coherent Transition/Diffraction Radiation

CTR: radial polarization.

CDR: the polarization can be mainly linear.

Single particle radiation: $\frac{dI_{sp}}{d\omega d\Omega}$ depends on the material and/or geometry of the target/slit

Radiation from a bunch: $\frac{dI}{d\omega d\Omega} = [N_e + N_e(N_e - 1)F(\omega)]\frac{dI_{sp}}{d\omega d\Omega}$

Bunch form factor: $F(\omega) = \int S(\vec{r}) e^{i\frac{\omega}{c}\vec{n}\vec{r}} \neq 0$ for pulse duration $\leq \lambda$

Impact parameter (only for DR) h $\leq \frac{\gamma\lambda}{2\pi}$

Short term activity: characterization of the THz source/1

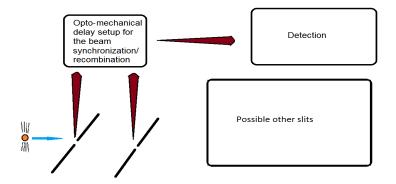
Accomplishable within 2017

 Characterize the maximum delivered energy

* Characterize the

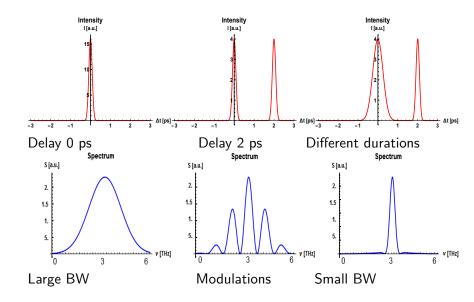
coherence band

★ Characterize the degree of polarization


Bunch parameters

Bunch energy: 200 MeV Bunch length: 500 μm Bunch Charge: 1.5 nC

dl/dω [µJ/THz]


A simple scheme for the shaping of the radiation/1

 \star The CDR in the THZ region can be induced in a sequence of slits.

 \star The detection can be performed via EOS techniques or with a Michelson interferometer

A simple scheme for the shaping of the radiation/2

Long term activity: upgrades and experiments

Starting from 2018

* Bunch compression and charge increase

 ⋆ Design experiments with THz radiation Example: compressed bunch

Bunch energy: 200 MeV Bunch length: 150 μm -0.5 ps Bunch Charge: 1.5 nC dl/dω [µJ/THz] 0.001 10-6 ω [THz] 0.5 1 5 10 ★Total irradiated TH7 energy: few hundreds μJ

★Bandwidth: *few THz*

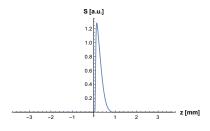
*Characterization of the THz source (energy, coherence band, polarization...)

 \star Temporal/Spectral shaping of the radiation for different applications.

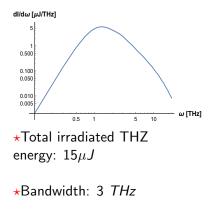
 $\star Upgrades:$ to increase the bunch charge and to shorten the bunch length.

*Design experiments with THz: for example electron acceleration.

Thanks for your attention


Broadband THz source: single temporal-shaped bunch

Bunch parameters

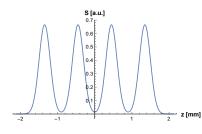

Bunch energy: 200 MeV

```
Bunch length: 300 \mu m - 1 ps
```

Bunch Charge: 1.5 nC

Calculated Radiation

Narrowband THz source: multi electron bunch


Bunch parameters

Bunch energy: 200 MeV

Bunch length: 300 μ m - 1 ps

Bunch Charge: 1.5 nC

Bunch Spacing: 2 ps

Calculated Radiation

