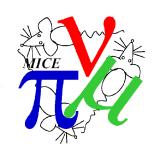
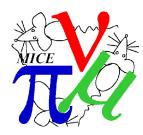
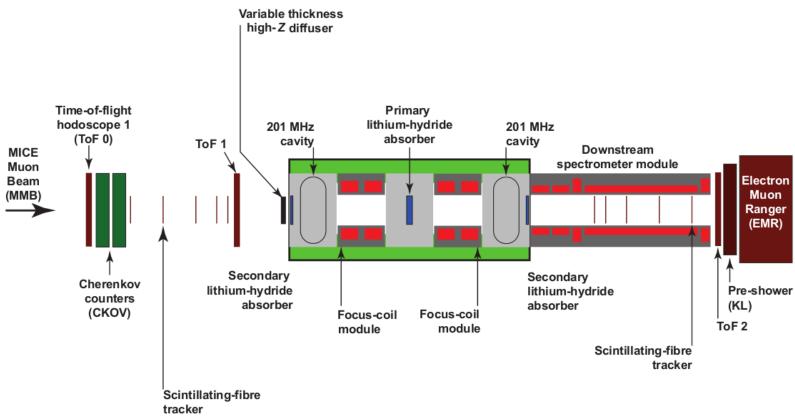


MICE Descope - Options



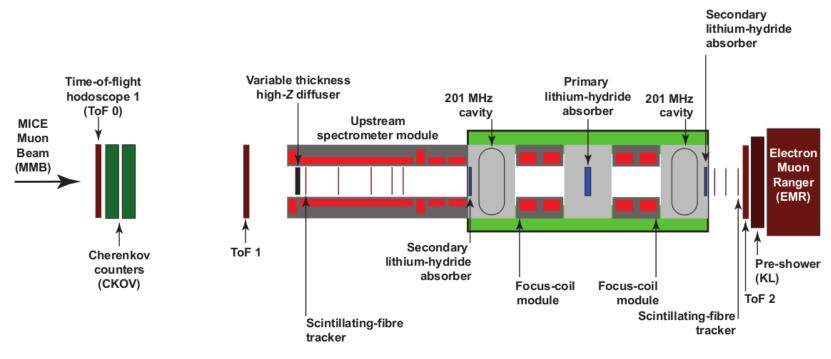
C.T. Rogers, D. Rajaram, P. Franchini, F. Drielsma, J. Tarrant, ...



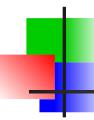

MICE Descope Options

- SS2 in downstream, no SS1
 - Measurement can be a difference measurement, i.e. absorber in vs absorber out
 - Upstream diagnostics for beam sampling or to control systematic due to instability in input beam
- SS2 in upstream, no SS1
 - Tracker straight tracks for x, x', y, y'
 - EMR range for pz
 - TOF12 augments downstream PID and downstream pz
- Use SS1 and SS2
 - Largely ruled out on grounds of risk
 - Should establish existence of viable optics
- In all cases, likely we only have 1 RF power source
 - V → V/sqrt(2)

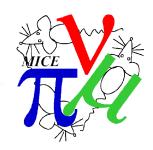
SS2 in downstream

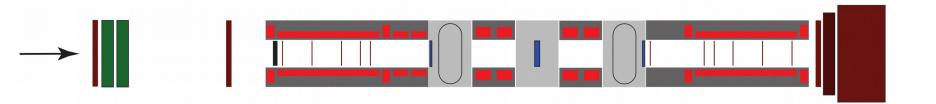


Questions


- Can we find a viable optics to match to FCU?
- Can we reconstruct well enough in the Quads+diffuser OR do a difference (absorber in vs out) measurement?

SS2 in upstream



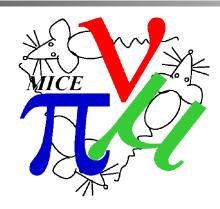


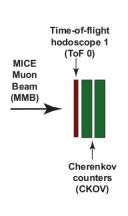
- Questions
 - Can we get sufficient downstream detector performance?
 - Does the beam scrape too much in TKD?

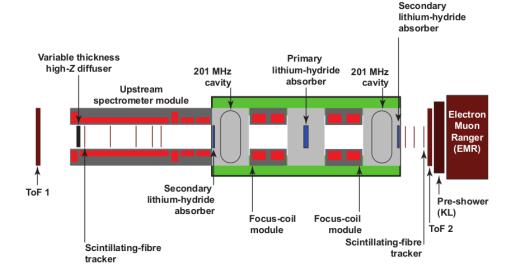
SS2 in upstream

Questions

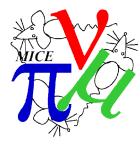
- Can we get a reasonable optics?
- Can we rotate SS1 and improve the situation?
- Is the risk of further issues with SS1 too great?
- See talk by Jaroslaw

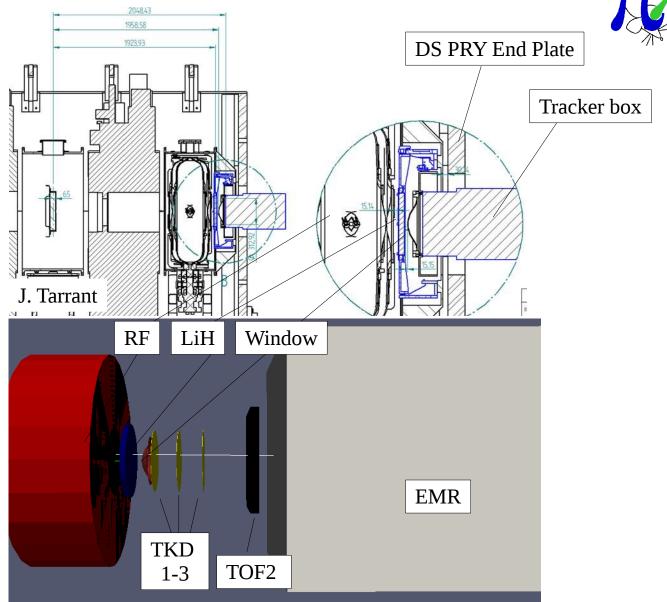

Timescales



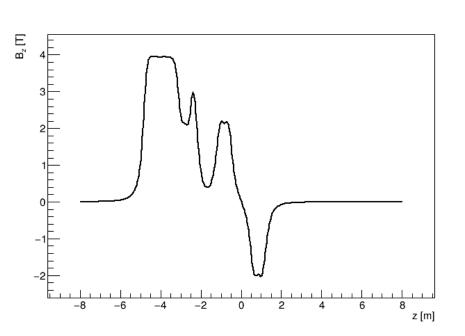

- Fall out from UK C2C 4th May
- Would like to see some convergence by ~ 13th May
- Need to have main physics inputs ~ 20th May
- Decision point is 27th May


SS2 Upstream Option



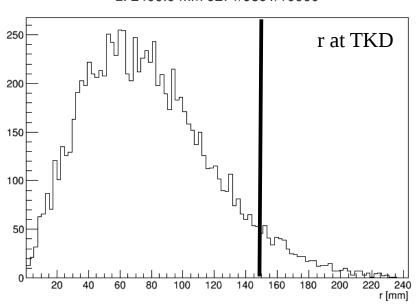

Revised Detector Configuration

- Use TKD to measure x, x', y, y'
- Use EMR to measure range => momentum
- Combined fit between EMR, TOF2 and TKD to get phase space at downstream end
 - Focus in this talk on position and momentum resolutions
- 3 stations in TKD
 - 2 stations to make a straight track, 3rd station for redundancy/noise rejection
- KL makes energy straggling => problem for momentum extrapolation
 - KL can be included for "better PID" runs
 - KL can be excluded for "better momentum resolution" runs
 - Simulations here do not include KL

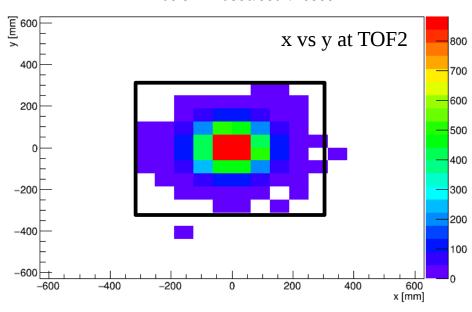

Downstream detectors

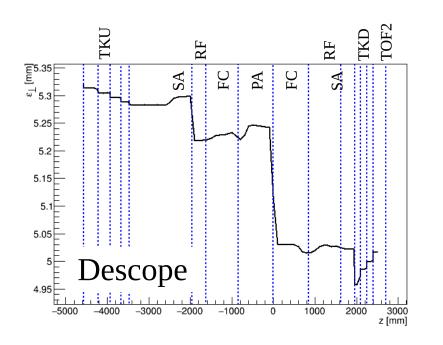


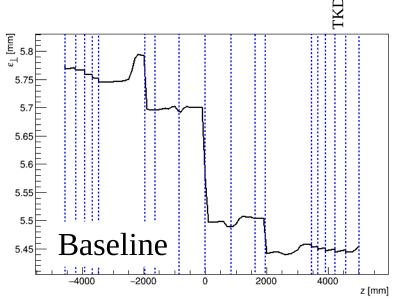
Optics



- Using modified version of 200 MeV/c Demo lattice
 - Remove SSD, keep currents/etc same

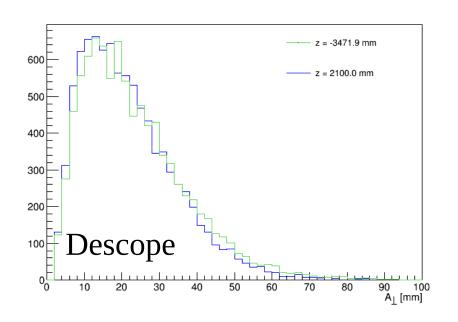


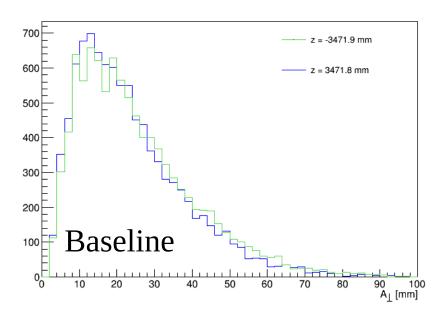

z: 2700.0 mm 9850/9891/10000



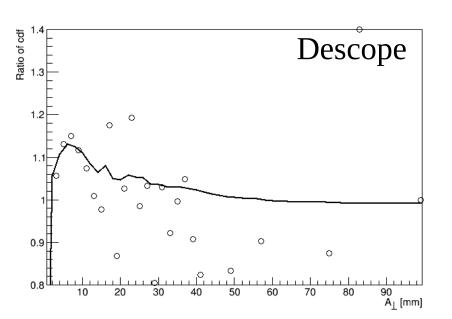
- Radial distribution at TKD station 3 for 6 mm emittance beam
 - 99 % of beam is transported to TKD
 - 93 % of beam is transported through TKD radial cut
- TKD becomes the limiting aperture

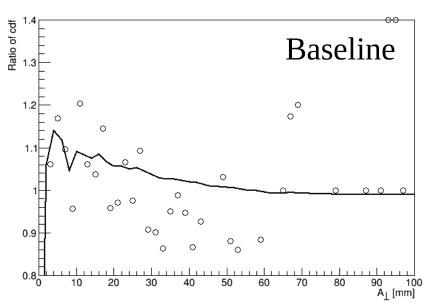
Emittance Reduction



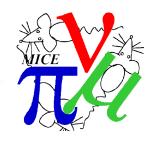

- See expected emittance reduction
- Transmission in descope 93 %
- Transmission in baseline 98 %
- Nb this is for initial beam emittance 6 mm nominal

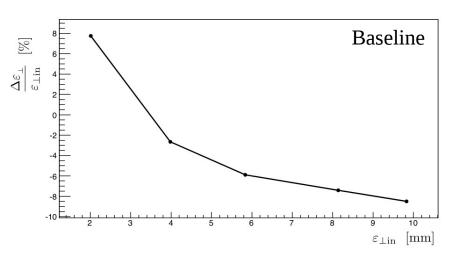
Amplitude change

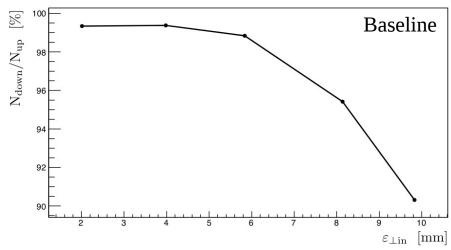




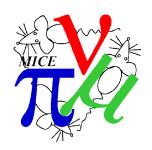
- Number of muons in each amplitude bin
 - Green upstream
 - Blue downstream






- Histogram
 - Consider the number of muons in each amplitude bin, n
 - Histogram is n(downstream)/n(upstream)
- Line
 - Consider the number of muons with amplitude <= bin edge, N
 - Line is N(downstream)/N(upstream)

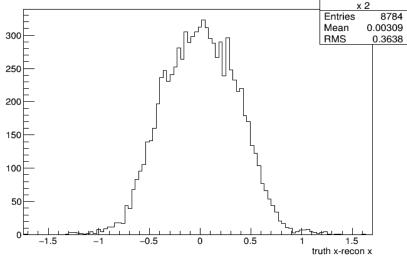
Cooling Performance

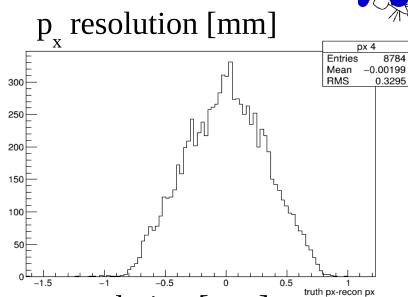


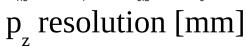
Descope:

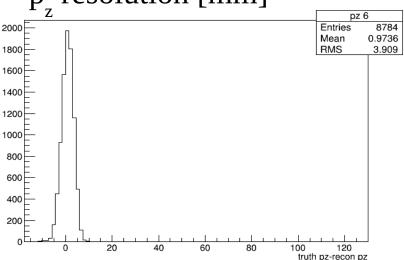
Nominal emittance [mm]	Input emittance [mm]	Output emittance [mm]	Emittance Change [%]	Transmission [%]
2.00	2.00	2.18	8.44	100.00
3.00	2.94	2.98	1.29	98.93
6.00	5.28	4.98	-6.23	92.66
10.00	7.34	6.65	-10.30	79.03

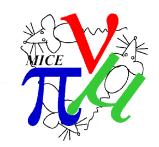

Combined fit - algorithm

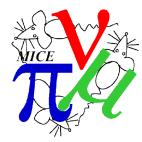

- Use x, y from TKD station 1
- Use x', y' calculated from TKD station 1 and station 2
- Extrapolate EMR track (incl x', y', x, y at EMR) back to tracker
 - Use Bethe Bloch formula to "undo" energy loss in TOF, air
 - Step size 1 mm
 - Use extrapolated total momentum to scale x', y' and deduce pz
- Do not model: cross-talk in EMR, RF-induced backgrounds
 - Not sure about tracker efficiency model (default tracker recon)
- Plots that follow are for 6 mm emittance, 200 MeV/c beam shown in earlier slides
 - Nb: expect worse performance for low pz


Combined fit - resolution

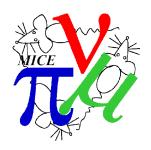





- Reject tracker noise
 - 5 standard deviation cut on x, y, p_x, p_y
 - 1 % of events
- Reject events which do not have 3 scifi space points and 1 emr track
 - 5 % of events


Recon Performance

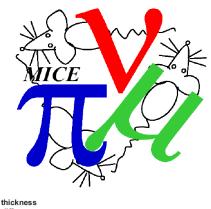
True Emittance [mm]	Recon Emittance [mm]	Bias [%]
2.18	2.22	1.73
3.02	3.05	1.29
5.12	5.17	0.86
6.94	6.99	0.78

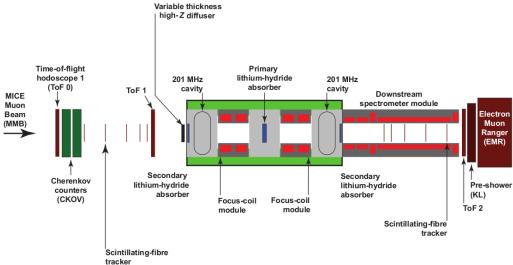

- Bias is significant
 - Old specification was for 1 % bias on 10 % emittance reduction
 - i.e. 0.1 % bias on emittance
 - Compare with TKU bias ~ 0.2 % (MICE note 122)
- Bias is dominated by x' resolution
 - We can measure x' resolution
 - E.g. compare x' from station 1-2 with x' from station 2-3 and assume stations are identical
 - Bringing the bias to < 0.1 % requires measurement of px resolution at few % level
- Emittance change signal is still significantly greater than bias

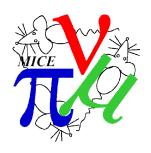
	Magnitude	Mitigation
EMR Material Budget	0.4 MeV/c p	Use TOF12 to cross-check p reconstruction
TOF2 Material Budget	0.15 MeV/c p	Use TOF12 to cross-check p reconstruction
Reconstruction Bias	~1 % emittance	Measure x' resolution in tracker stations
Detector Efficiency	?	Cross-check with EMR/TOF2
RF Noise	?	Noise rejection from EMR/TOF2
FCD fringe field	?	Install hall probes on TKD
Position Alignment	100 microns?	TKD directly accessible for survey
Pitch/Yaw	0.3 mrad?	TKD directly accessible for survey
Roll	1 mrad?	TKD directly accessible for survey


Practical Matters

- Reasonable confidence from Jason and Geoff that this can be built
 - 150 mm tracker spacing may be a bit tight for light guides
- Some things become easier
 - TKD is in air and independent from RFD support/vacuum
 - No Helium
 - Much easier access for e.g. maintenance, alignment
 - RFD may be accessed by sliding detector assemblies and PRY end plate downstream along the beamline
 - Downstream radiation shutter is outside the PRY
 - Slide detector assemblies away to install
- Slight snag with RFD power couplers
 - Interferes with PRY leg attachment (but not legs themselves)



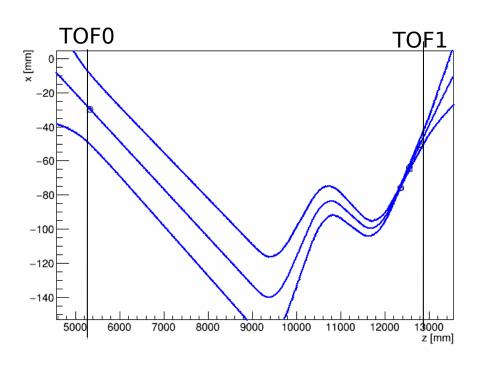

SS2 Upstream - Conclusions

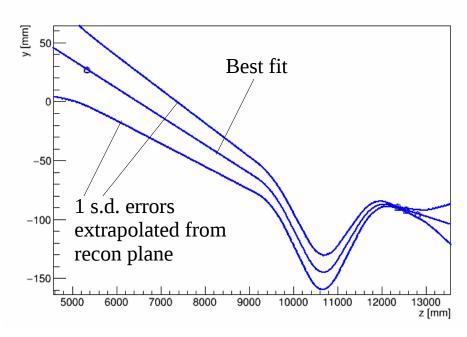

- Cooling channel emittance reduction is unchanged
- Cooling channel transmission/acceptance is somewhat reduced
- Detector resolution is somewhat worse
 - Possible to measure/remove the bias
- The experimental measurement still appears very promising

SS2 Downstream Option

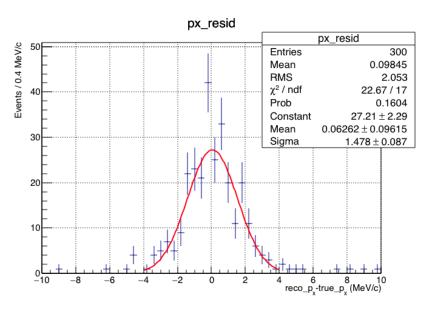
SS2 Downstream

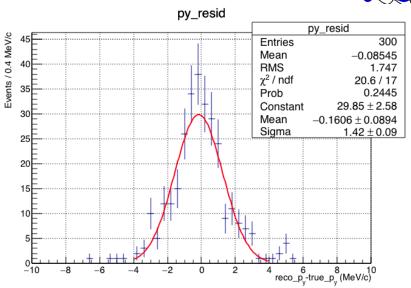

- With SS2 in downstream position difference measurement
 - Measure emittance downstream with absorber in
 - Measure emittance downstream with absorber out
 - Look at the difference
 - Need to demonstrate match into FCU; possibly with help of beam selection from upstream detector system
- With SS2 in downstream position direct measurement
 - Use additional tracker stations around the upstream region
 - Need to demonstrate sufficient resolution despite material (e.g. TOFs and diffuser)

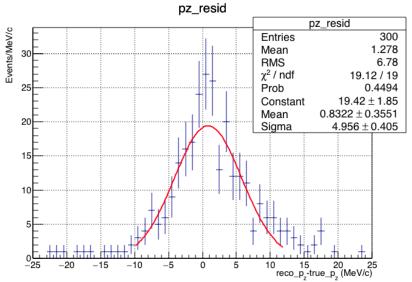

Detector Model and Reconstruction


- Tracker stations placed in air
 - Stations as described as in MAUS geometry
 - Virtual planes at each station
 - x, y smeared by tracker resolution (500 um)
 - Time smeared by TOF resolution (70 ps)
 - Propagate errors & fit x, y, t
 - Energy loss & scattering in material accounted for
 - Require |x,y| < 150 mm at tracker stations
- Code:
 - From Rogers: GlobalErrorTracking & Minuit-fitter
- 3-200 G4BL input
 - Takes a long time to track & fit
 - Minuit takes ~ several hundred iterations to converge

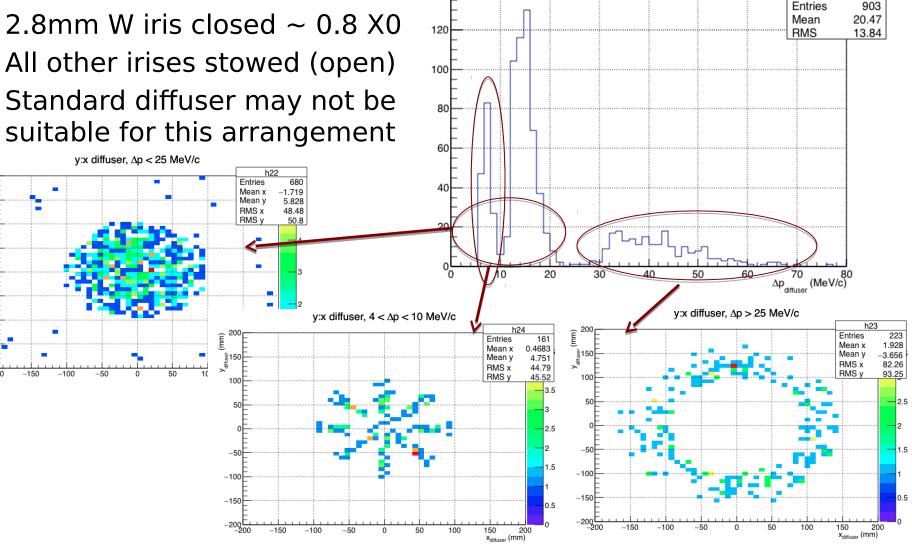
Sample TOF0-TOF1 Fit



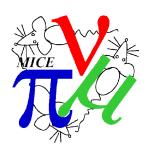

- 3 stations near TOF1
- 1 station near TOF0
 - Clearance between TOF0 & Ckov is tight ~15cm barely fits a tracker station


Resolutions

- Pz resolution ~ 5 MeV/c
- px, py ~ 1.5 MeV/c



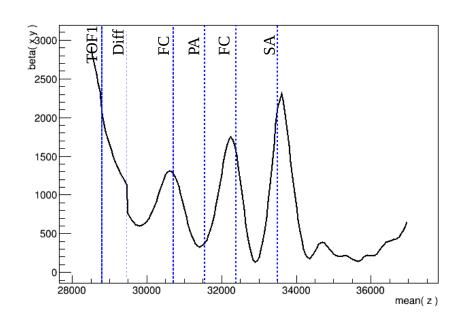
Energy straggling in diffuser

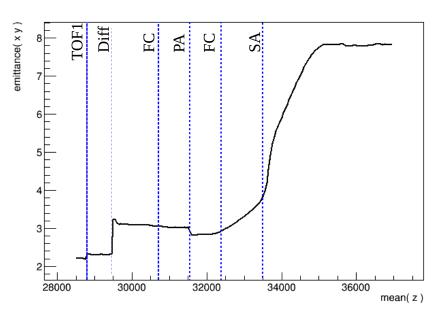

 $\Delta p_{\text{diffuser}}$



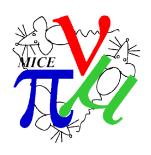
Oth

Other checks



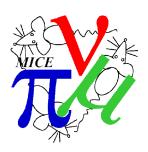

- Tried Mark Rayner's transfer-matrix-based reconstruction
 - Modified to include momentum loss estimate due to ckov
 - Pz biased by ~ 5 MeV/c, not explored further
- Tried adding a tracker station between Q7 and Q8
 - No real improvement in resolution for default quad settings
- Checked that downstream tracker reconstruction was not affected by upstream issues

Matching into FCU



- Matching done using G4BL deck
 - Full simulation from the target
 - Includes descoped MICE channel
- Optical beta function match looks okay
 - But significant emittance growth
 - Issue with momentum spread/chromatic aberrations?
 - Under investigation

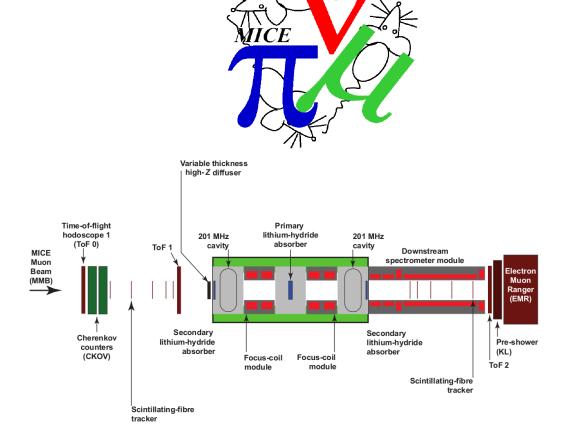
Comm


Comments (1)

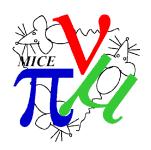
- Engineering and layout:
 - Tracker stations require at least 150 mm clearance according to Geoff Barber
 - Clearance between TOF0 and Ckov is very tight (142 cm), will require moving TOF0/Ckov to fit a tracker station in
 - Placing a tracker station between Q7-Q8 assumes there's no field in that region. This needs to be measured/verified in the Hall with Q789 turned on
- Tracker infrastructure:
 - Having stations spaced far apart makes it tricky servicing them with the same cryo
 - 1 Plane at Q7-Q8, 2 planes at TOF1 can be serviced by a cryo
 - TOF0 which is behind the wall will need a separate cryo

Comn

Comments (2)


Diffuser:

- Diffuser position: Have assumed diffuser is placed just upstream of the first secondary absorber
- Matching optics may dictate that it be moved slightly
- Having 2 tracker stations downstream of the diffuser if they can be accommodated -- will (should) help with reconstruction – study not complete


Statistics:

- For a difference measurement statistical requirements are greater by factor 10
- Statistical errors arise from sampling the beam distribution
- (In upstream vs downstream measurement, statistical errors arise from sampling the scattering distribution only)
- MICE Note 268
- What about statistics required for systematics reduction?

Conclusions

Conclusions

- SS2 in upstream position
 - Can we get sufficient downstream detector performance?
 - Yes; the detector resolution is somewhat worse, but still manageable
 - Does the beam scrape too much in TKD?
 - TKD becomes the limiting aperture; the transmission is worse, but a clear emittance reduction signal is visible
- SS2 in downstream position
 - Can we find a viable optics to match to FCU?
 - Not yet, but it looks promising
 - Can we reconstruct well enough in the Quads+diffuser OR do a difference (absorber in vs out) measurement?
 - A difference measurement is viable assuming we can match to FCU
 - Need to understand better the effects of the diffuser on resolutions