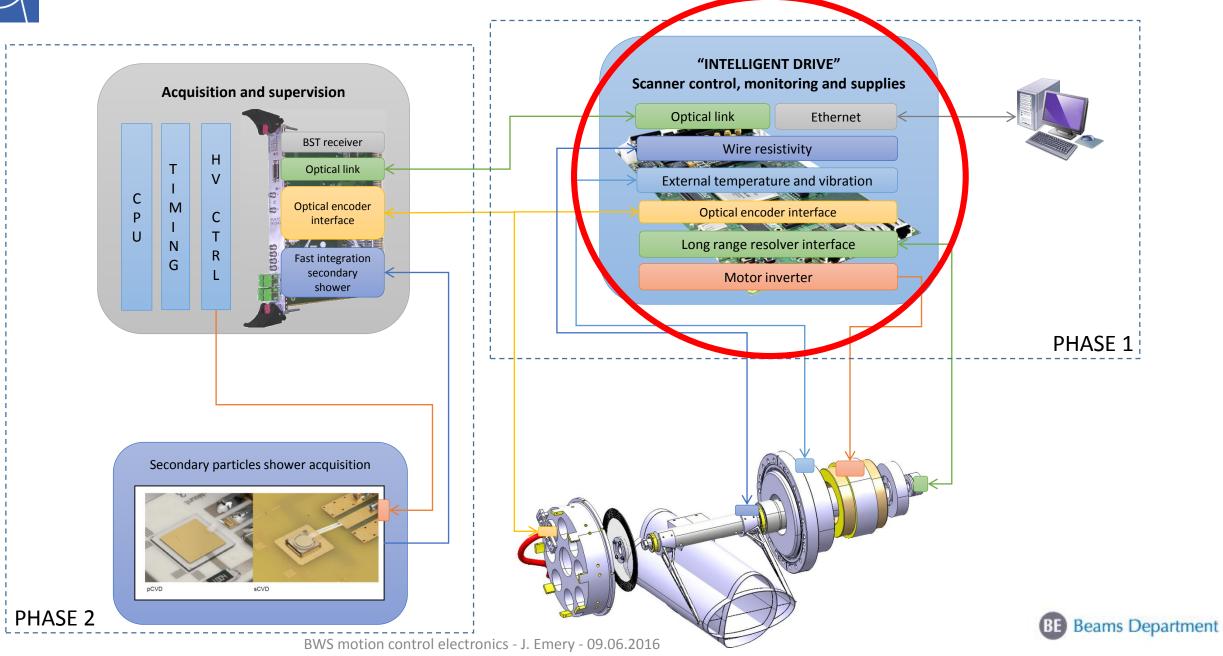
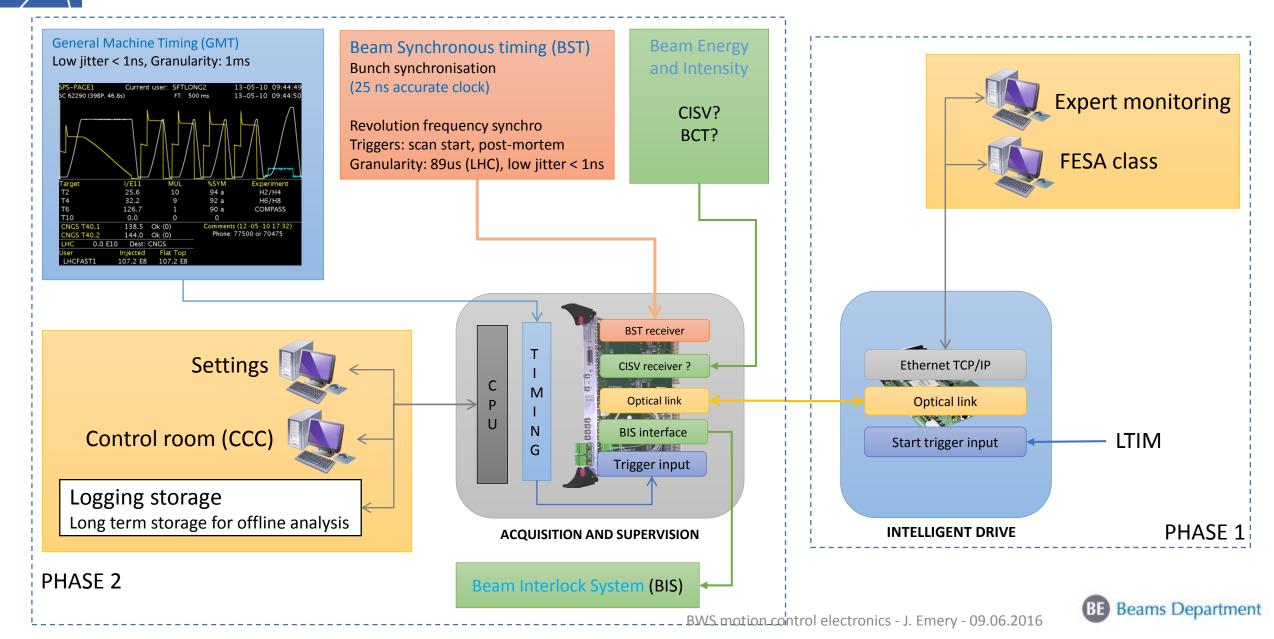


BWS motion control electronics


BI technical board – 09.06.2016

J. Emery & P. Andersson

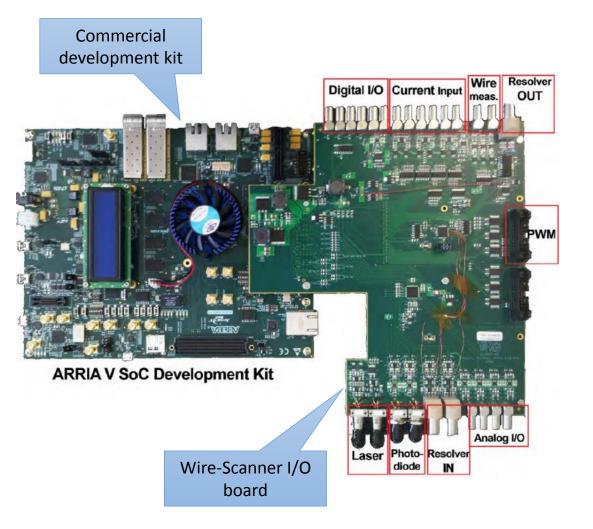
BWS motion control electronics - J. Emery - 09.06.2016



Overview: Control and Acquisition electronics

CERN

Overview: External systems connections

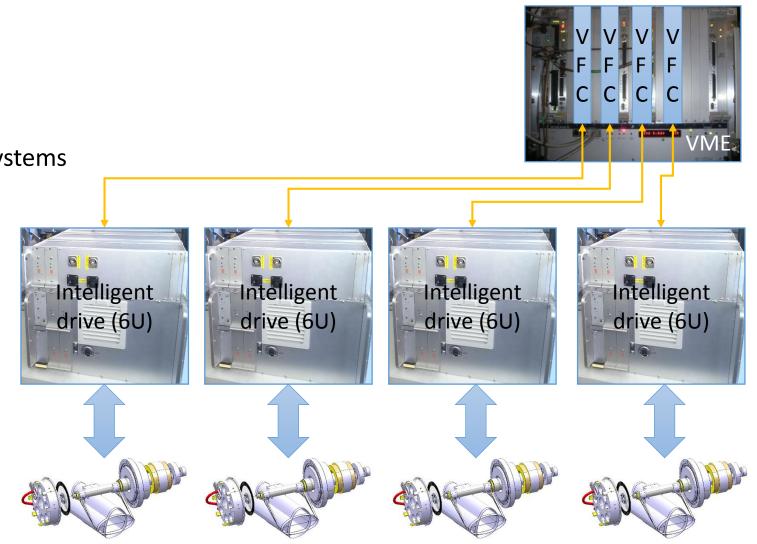

- Beam Wire Scanner meeting on the 19.05.2016 to expose the options for the digital system of the "Intelligent drive"
- These slides are extracted for this presentation
- It was decided to go for VME board + Mezzanine solution as other BI projects use this solution

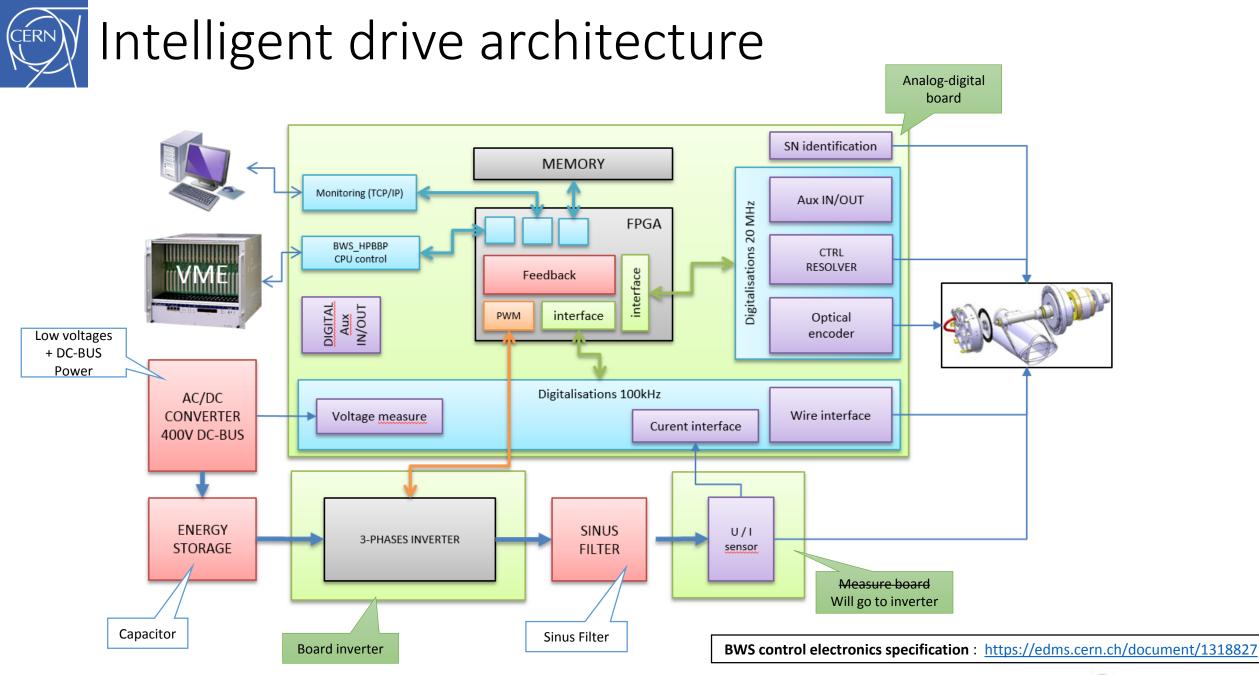
Three options for the digital platform

- Option 1:
 - Standalone VME board + custom mezzanine
 - Use of the VFC in standalone mode
 - Dedicated analog/optical mezzanine
- Option 2:
- Combined analogue-digital board
 Use the FPGA reference design (Altera)
 Add dedicated analog/optical circuits
 Combine the 2 boards we have today

- Option 3: Starter-kit + mezzanine
 - Use Arria V SoC Dev kit
 - Dedicated analog/optical mezzanine

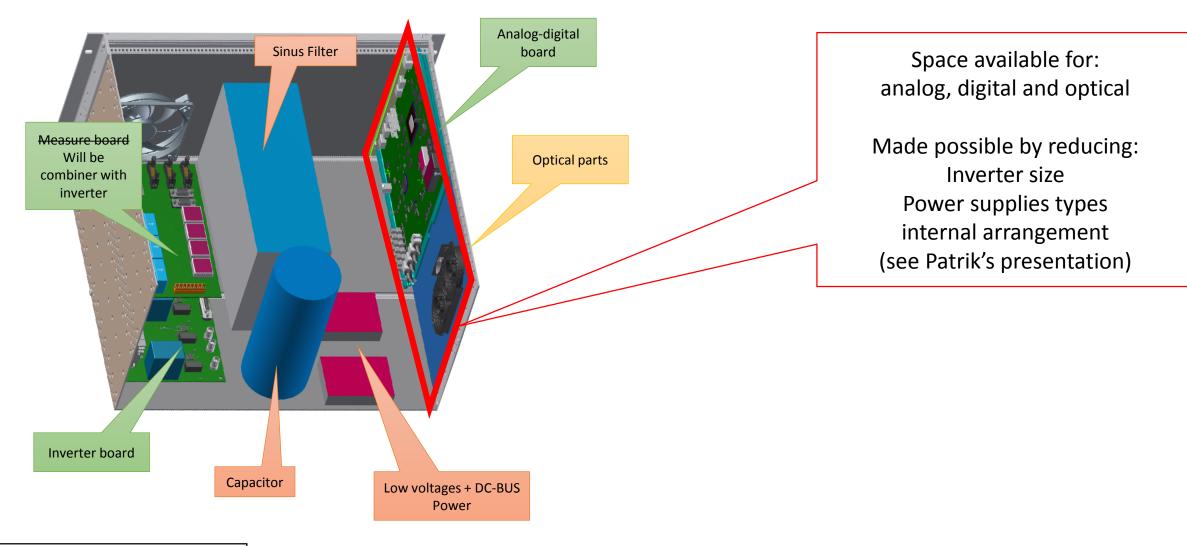
Summary table


Criteria	teria Option 1: VFC modified		Option 3: DevKit	
Board size	3	1	2	
Powering	3	1	2	
EMI	3	1	2	
FPGA resources	2	1	1	
Board interfaces	1	2	2	
External Memory	2	1	1	
Testability	1	1	1	
Code reuse	1	1	1	
Methodology	2	1	1	
FW readiness	3	2	1	
HW readiness	2	3	1	
Hardware design effort	2	3	1	
Firmware design effort	3	2	1	

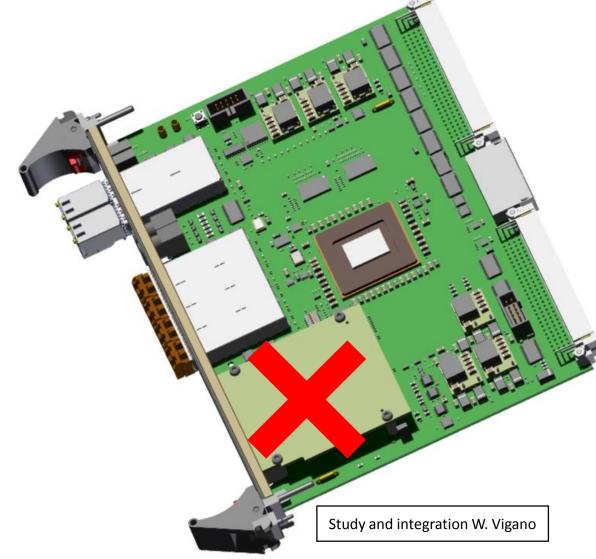


Scanner control architecture

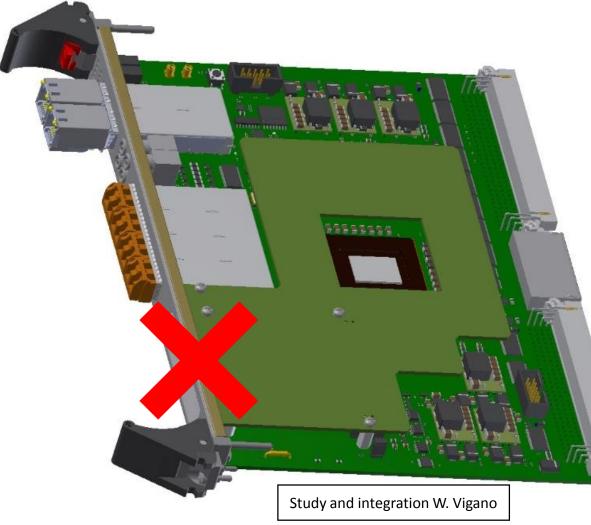
- One intelligent drive (ID) per scanner
 - avoids multiplexing
 - constant monitoring/control
 - allow parallel scans
 - But imply more control and acquisition systems
- Deported processing from VME to ID
- Local monitoring and fault diagnostics
- One VME crate for multiple scanners
 Number depends on CPU-Memory load
- So we try to minimize the ID size
- Will still require more space than current installation: (PSB: 3 racks instead of 1)



Space availability for the board in ID


<u>Board realisation</u>
1) Boards size
2) Powering requirements
3) Cabling and EMI protection

<u>Board realisation</u>1) Boards size2) Powering requirements3) Cabling and EMI protection


- 1. Standard VFC + standard mezzanine
- Missing board space for components

Option 1: VFC + MEZZANINE

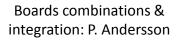
<u>Board realisation</u>1) Boards size2) Powering requirements3) Cabling and EMI protection

2. Standard VFC + maximized mezzanine

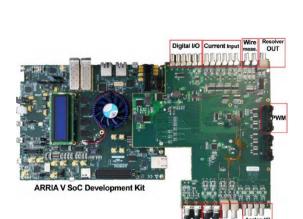
• Missing space for the optical components

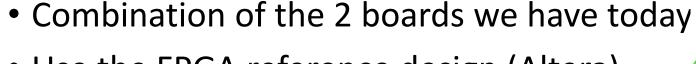
Option 1: VFC + MEZZANINE

Board realisation

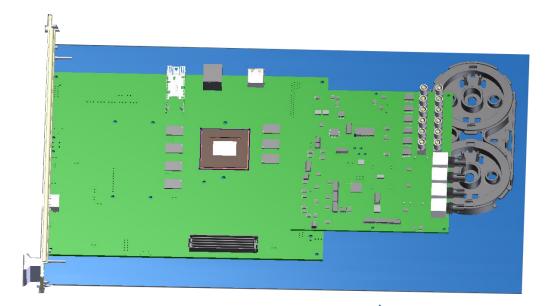

Boards size
 Powering requirements
 Cabling and EMI protection

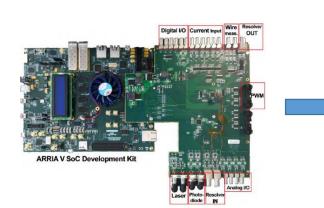
- 3. Customized VFC + maximized mezzanine
- Remove the lower SPF cages
- Check power supply VADJ
- VFC in standalone mode
- Stack-up of VMC and mezzanine
- Dedicated analogue/optical mezzanine
- None standard FMC mezzanine shape due to the numerous components
- VME connectors for powering the boards


Boards integration and design W. Vigano & P. Andersson



• Use the FPGA reference design (Altera)


Option 2: Combined analog-digital board ¹⁾ Boards size ²⁾ Powering requirements ³⁾ Cabling and EMI protection

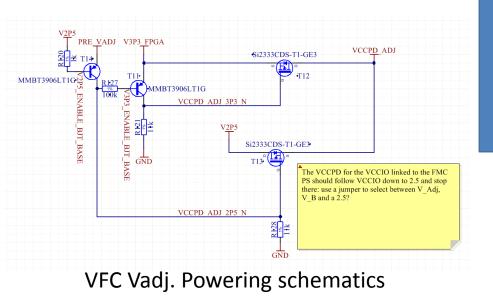

Board realisation

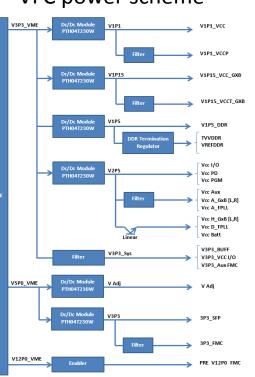
Option 3: Starter-kit + mezzanine

- Board realisation
 1) Boards size
- Powering requirements
 Cabling and EMI protection

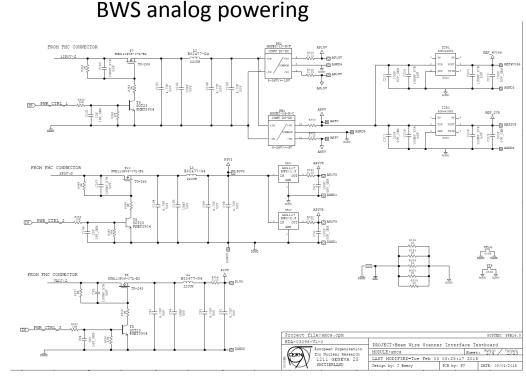
- Same configuration as today
- FPGA platform Arria V SoC Dev kit
- Modification of the wire-scanner mezzanine to fit the box

Boards combinations & integration: P. Andersson





Powering requirements


VFC powering the BWS analog board: 12 [V] -> OK 3.3 [V] -> OK 1.8 [V] -> to be checked

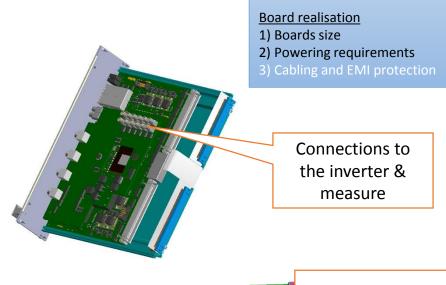
1.8[V] is needed to operate the fast ADC, the whole board is using this voltage.

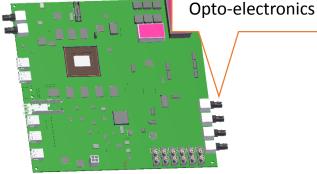
VFC power scheme

 \Rightarrow Confirmation from Andrea, 1.8V is possible \Rightarrow Is this functionality already tested on the board for another project?

Cablings:

- Similar philosophy of the cablings for all 3 solutions (use of top connectors)
- Other connections slightly worst on the DevKit since uses all sides


EMI interferences:


- All 3 options will use same box => same shielding from external sources
- Only remains perturbations between analog and digital part

Options	Electrical coupling
1. VFC	-
2. Custom	+
3. DevKit	-

=> We are preparing a new mezzanine which will sit next to the VFC to overcome potential issue

Ethernet – optical link

BWS motion control electronics - J. Emery - 09.06.2016

Digital architecture related criteria

• FPGA logic elements:

with the 3 options

- Future implementation:

Mbits, 100 to 40 Mbits)

More flexibility using ARM CPU

- ok for today's implementation:

Depends on processing complexity

External memory potential limitation

• VFC TCP/IP Data transfer will probably

be 4 to 10x slower than today (400

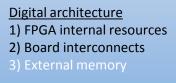
Digital architecture 1) FPGA internal resources 2) Board interconnects 3) External memory

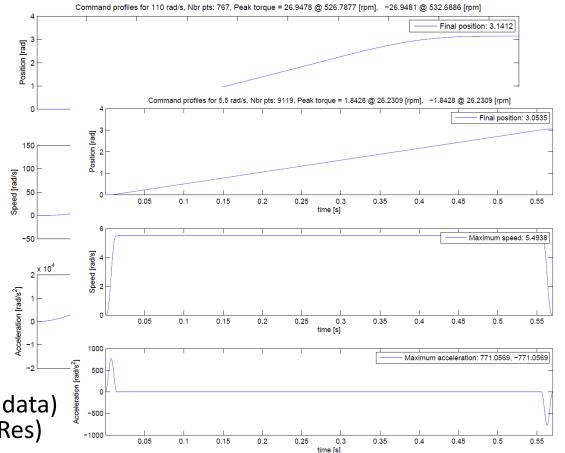
	Custom design Analog-Digital	VFC	
Code status (for 2016)	95%	50% (6 months)	
Evolutivity		Neutral	
Use of IP developped for VFC	Same FPGA & transceiver		
FPGA use as today ALM [%]	14	21	
Memory [%]	10	16 16	
DSP Blocks [%]	13		
FPGA type	ARRIA V - SOC	ARRIA V	
Туре	5ASXFB3H4F40C5N*	5AGXMB1G4F40C4N	
Nbr Gates	362K	300K	
ALM (adaptive logic module)	136880	113208	
Memory (M10k)	17,260	15100	
DSP Blocks	1045	920	
	2x ARM processor at 1GHz	Software NIOS II at 200 MHz**	
Logic use for soft CPUs		4753	
Transfert TCP/IP (as today)	>400 Mbits tested point-to-point	40 - 100 Mbits max 🛛 🧹	
memory controller	3 hard memory controllers	2 hard memory controllers	
Processor side 2	2x 256 x 16bits + 1 x 256 x 16bits ECC	-	
DDR3 SDRAM type	MT41K256M16HA-125:E	MT41K512M16HA-125:E	
Organisation	256 M x 16	512 M x 16	
FPGA side	4x 256M x 16bits	2x 512M x 16 bits	
memory total in bytes	2048 Mbytes	2048 Mbytes	
shared with program RAM	no	yes	
Nbr of measurement saved (worst case SPS)	2048/336 = 6	2048/336=6	
Maximum theoritical transfert	4 x 1600 Mword = 12.8 Gbyte	2 x 1600 Mword = 6.4 Gbyte	
Implemented interface tested	4 x 800 Mword = 6.4 Gbyte/s	Extrapolation: 2x800/4 = 0.8 Gbit/	
SPS: 336 Mbytes burst read time	0.0525	0.105	

slides

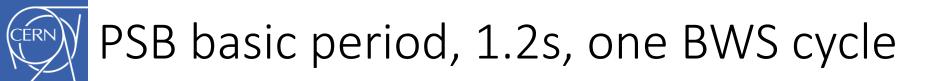
With NIOS **Softcores**

*As today on the started kit **Altera "Nios II Performance Benchmarks" 16.12.2015


Depends on the use cases


- Scans duration change a lot with speeds 20 [m/s] -> 48 [ms] (767 pts) 1 [m/s] -> 570 [ms] (9119 pts)
- Time between IN and OUT (We will limit this time to about 1s)
- Number of scans per user: min. 2 if we limit INOUT time to get same functionality max. determined by memory depth, mode of operation (expert/op), required repetition rate (can we fix it?)
- For SPS:

With time between IN and OUT of 1s Worst Case: 2048/336 = 6 scans (full record OPS and resolver data) Best Case: 2048/5 = 409 scans (no offline processing of OPS/Res)


External memory depth requirement

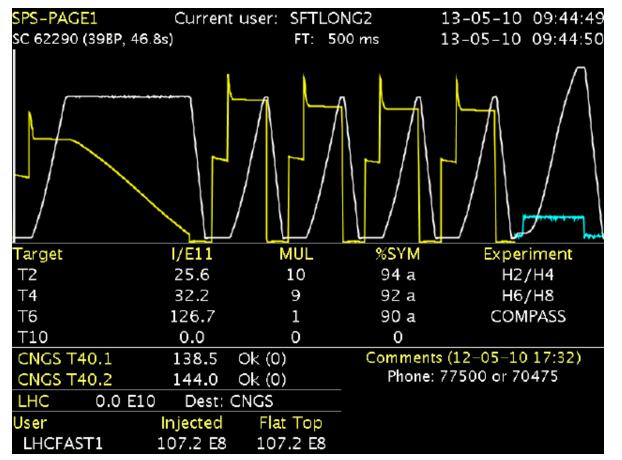
VFC or for custom options have the same memory depth (2048 Mbytes)

355ms to transfer 101 Mbytes => 298 Mbit/s Not possible with TCP/IP and VFC Needs full implementation using VME (Phase 2)

Memory depth for the PSB

Expert mode (detailed data)

Tangential speed [m/s]Angular speed (PSB)movement duration [s]max. INOUTfeedback + wire data [Mbits]Optical encoder [Mbits]resolver raw [Mbits]201330.040.5120.33360.11360.11] total [Mbits] 740.54 765.65	92.57
20 133 0.04 0.51 20.33 360.11 360.11		
	765 65	
15 100 0.053 0.504 21.02 372.31 372.31	705.05	95.71
10 67 0.0785 0.491 22.33 395.51 395.51	813.34	101.67
1 6.7 0.485 0.245 41.86 741.58 741.58	1525.02	190.63
20 133 0.04 0.51 20.33 0.58 0.29	21.20	2.65
15 100 0.053 0.504 21.02 0.60 0.30	21.92	2.74
10 67 0.0785 0.491 22.33 0.64 0.32	23.28	2.91
1 6.7 0.485 0.245 41.86 1.20 0.60	43.66	5.46


- 1) One measurement cycle (one IN, one OUT)
- 2) Data recorded continuously between in and out movement
- 3) INOUT time calculated for IN=275ms, OUT=805ms
- 4) Expert mode => Motion data and raw encoders data storage Will be used until we have the optical position sensor digitalised in the VME
- 5) Op Mode => Motion data and processed encoders data storage

Operational mode (OPS & RESOLVER processed)

> IN-OUT delay used for the calculation: 20 m/s => 805-20-275=510ms 15m/s => 805-53/2-275=504ms 10m/s => 805-79/2-275=491ms 1m/s => 805-570/2-275=245ms

- Multiple users with different durations 1.2s to >20s
- Challenge arises when managing multiple scanning cycle per user
- <u>Clear use cases must be given by</u> <u>OP/ABP</u> to calculate the among of produced data and what data reduction we need to apply:
 - at the FPGA levels (ID and/or AS)
 - at the VME CPU levels

Memory depth for the SPS

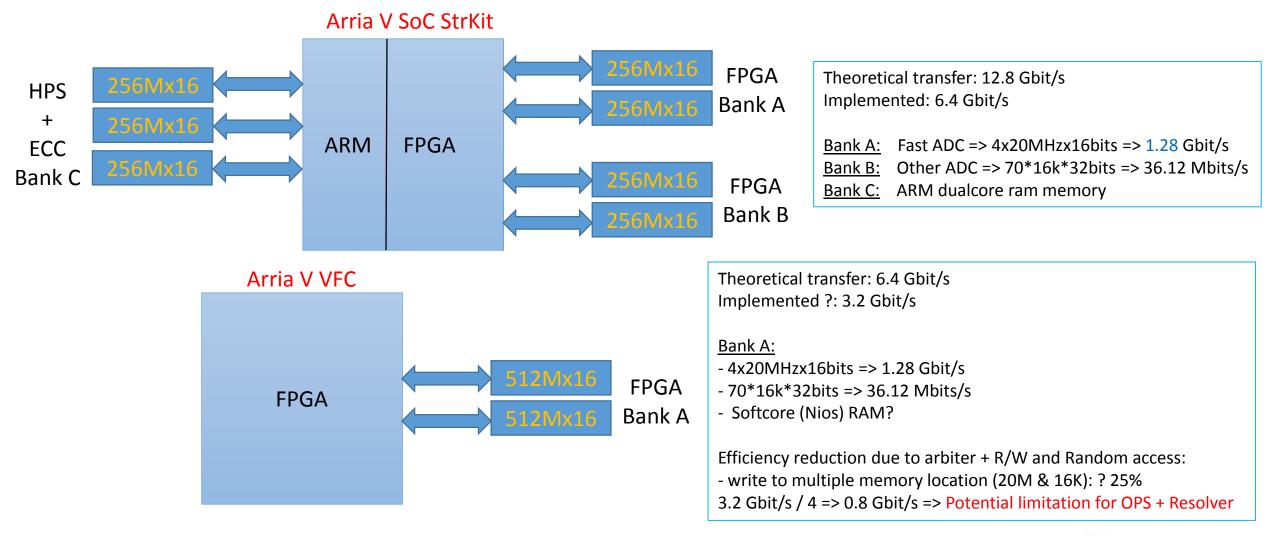
Digital architecture 1) FPGA internal resources 2) Board interconnects (detailed data)

Tangantial speed [m/s]	Angular spood (SDS)	movement duration [s]	INOUT	feedback + wire data [Mbits]	Optical encoder [Mbits]	resolver raw [Mbits]	total [Mbits]	[Mbyte]
Taligential speed [III/s]	Aliguiai speeu (SPS)	movement duration [s]	INCOT	reeuback + wire data [wbits]	Optical encoder [wibits]	Tesolvel Taw [IVIDITS]	total [wibits]	
20	110	0.048	1	37.76	668.95	668.95	1375.65	171.96
15	82	0.064	1	38.87	688.48	688.48	1415.82	176.98
10	55	0.0933	1	40.88	724.24	724.24	1489.37	186.17
1	5.5	0.57	1	73.73	1306.15	1306.15	2686.04	335.75
20	110	0.048	1	37.76	1.08	0.54	39.38	4.92
15	82	0.064	1	38.87	1.11	0.56	40.53	5.07
10	55	0.0933	1	40.88	1.17	0.58	42.64	5.33
1	5.5	0.57	1	73.73	2.11	1.05	76.89	9.61
								5 at 1 a
Tangential speed [m/s]	Angular speed (SPS)	movement duration [s]		feedback + wire data [Mbits]	Optical encoder [Mbits]	resolver raw [Mbits]	total [Mbits]	[Mbyte]
20	110	0.048	10	347.86	6162.11	6162.11	12672.08	1584.01
15	82	0.064	10	348.96	6181.64	6181.64	12712.24	1589.03
10	55	0.0933	10	350.98	6217.41	6217.41	12785.80	1598.22
1	5.5	0.57	10	383.83	6799.32	6799.32	13982.47	1747.81
20	110	0.048	10	347.86	9.94	4.97	362.77	45.35
15	82	0.064	10	348.96	9.97	4.99	363.92	45.49
10	55	0.0933	10	350.98	10.03	5.01	366.02	45.75
1	5.5	0.57	10	383.83	10.97	5.48	400.28	50.04

- Only one measurement cycle (one IN, one OUT) 1)
- Data recorded continuously between in and out movement 2)

Operational mode (OPS & RESOLVER processed)

Expert mode

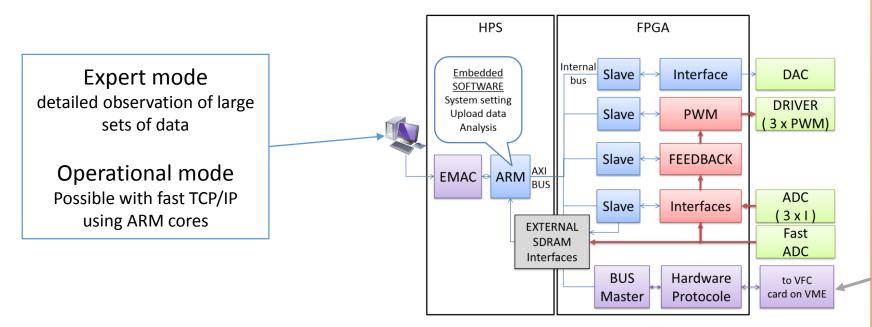

- Large data grow due to INOUT delay => Can we limit INOUT to a maximum of 1s and do multi-scans per cycle? 3)
- Expert mode => Motion data and raw encoders data storage 4) Will be used until we have the optical position sensor digitalised in the VME
- Op Mode => Motion data and processed entrodetisn data storages Emery - 09.06.2016 5)

External memory access organisation

Digital architecture 1) FPGA internal resources 2) Board interconnects 3) External memory

Is the external memories connections could be a limitation?

Is the FPGA selection will determine the system and Firmware testability?


<u>Simulation level:</u>

Most of the final code written in VHDL => Verification (VHDL, SystemVerilog, Simulink) on simulator for all options.

<u>Component level:</u>

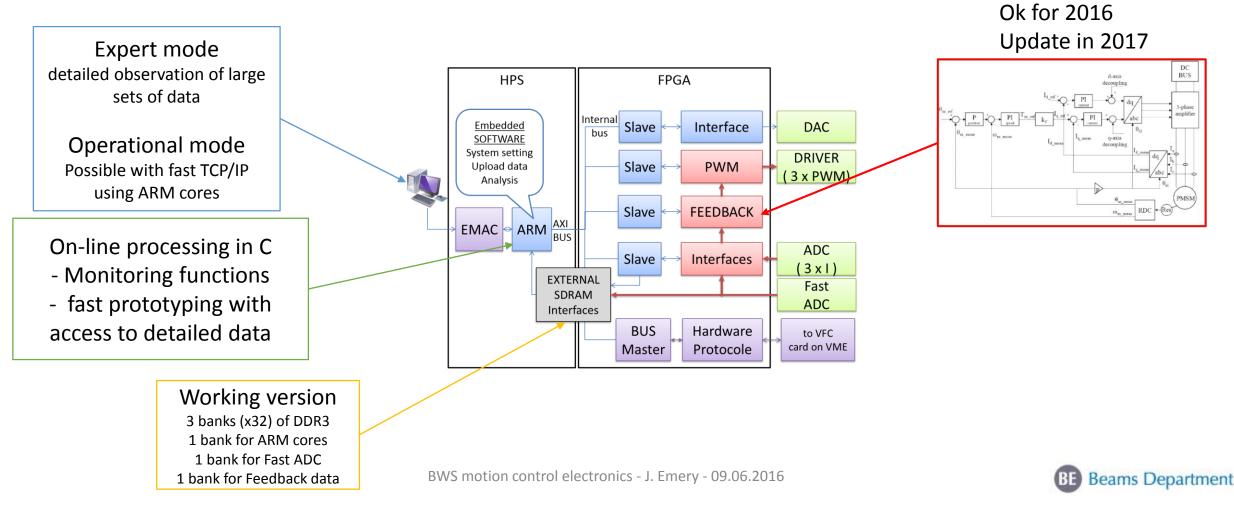
JTAG (and JTAG link) probing will be available on all options in the lab and on fields prototypes.

• <u>System level</u>: lab debugging and field validations: Same method could be used (TCP/IP access to large internal data with expert application), transfer rate will vary.

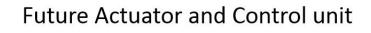
Hardware link to VME

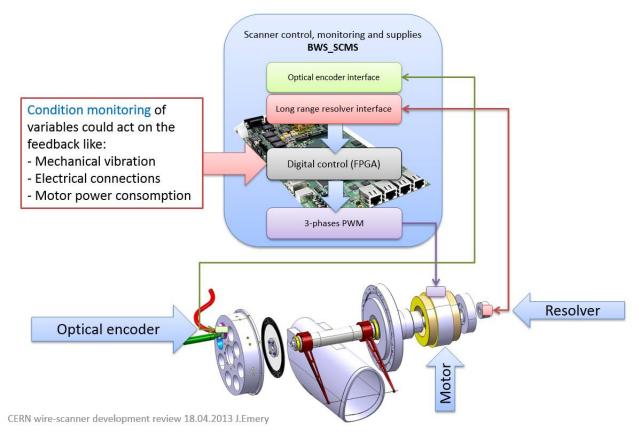
- Transport and integrity of data
- Transparent links between SoC domain
- memory mapping between the FPGAs
- JTAG link between FPGAs

Implementation Sep 2016-January 2017


=> THIS COULD BE REUSED FOR OTHER PROJECTS

Code reuse between options?


Is the FPGA selection will determine code reusability?


- Yes partially, because we have already large working code (option 2 and 3)
- No, because all main functionalities will be in VHDL (reusable for all options)
- Not really, not much reuse of existing VFC code for all options (no need of VME, BST, etc ...)

Condition monitoring: Survey all system variables

- Condition monitoring and decision in real time.
- To react to unexpected even during a movement
- Large number of parameters to take into account
- Target reaction time within one feedback period 62.5us: 12k instructions Nios 62k instructions ARM

Challenges of the ID processing

- Position, speed and torque precise controlling fully written in VHDL first version operational for 2016 Second version foreseen in 2017 (improve precision and flexibility)
- On-line data processing and fault detection Will be used for survey system conditions (mechanical, electrical, controls) Prototyping foreseen in Simulink/MatLab and C in the drive Implemented in VHDL for critical ones, leave
- Special functionalities

Processing/Area to foresee for future functionalities: Tails measurements procedure, <u>Delayed multi-scans (reconstruct small beams)</u>, vibrations on-line compensation.

=> I will start detailed work on this subject in September 2016 (MSE)

Additional slides

BWS motion control electronics - J. Emery - 09.06.2016

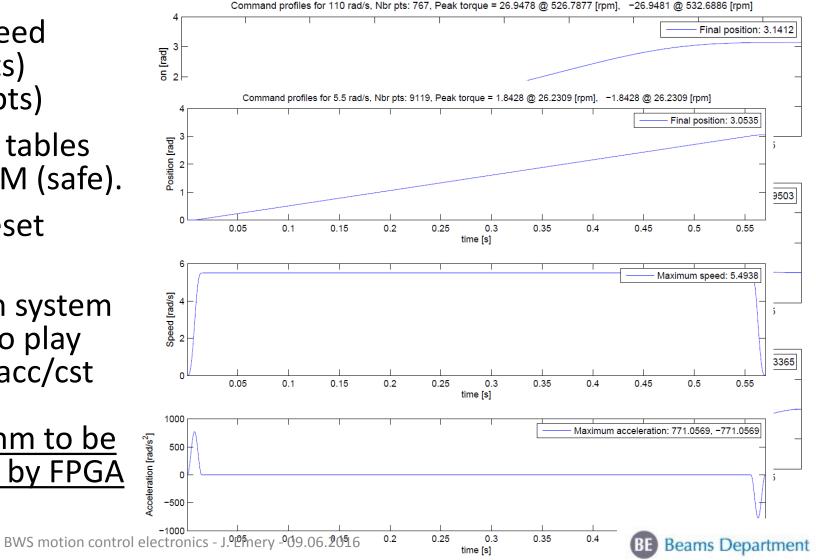
Design related criteria

Is the FPGA selection will drive design methodology?

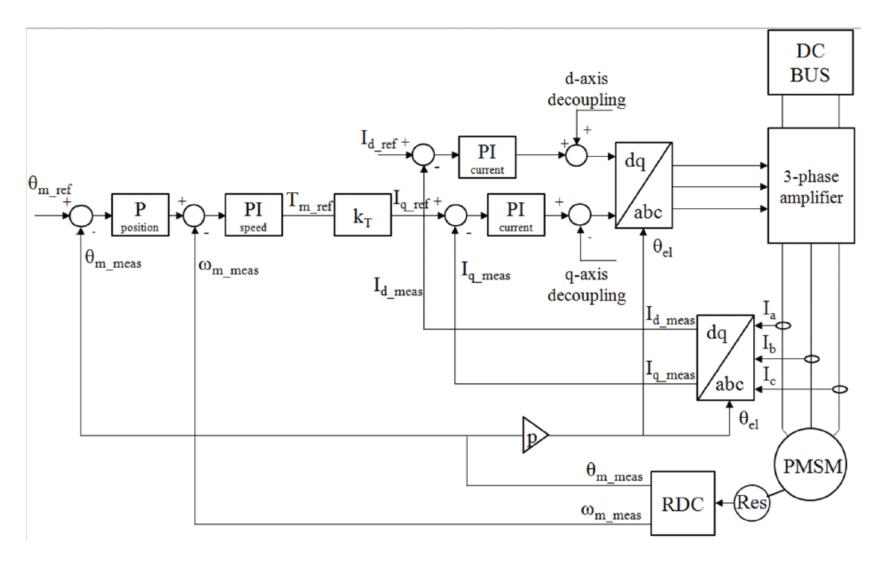
- Yes, hardware processors can allow on-line prototype of processing to run in real time.

Methodology:

- Prototyping data processing in MatLab on existing raw data 1)
- 2) Simulink modelling of the algorithms and test on Dspace
- 3) Implementation in C => Fast to write in C and test on real system Needs fast processing units Needs memory access to data being recorded
- Final version must be in VHDL: 4)
 - Parallel processing independent to any OS or other running tasks
 Powerful verification in siulation


 - Powerful tools to do verification on the FPGA
 - But: Long development & verification time

Profiles: online calculation vs pre-calculated


- Operate at different top speed 20 [m/s] -> 48 [ms] (767 pts) 1 [m/s] -> 570 [ms] (9119 pts)
- Today pre-calculated into 3 tables included in the FPGA as ROM (safe).
- Needs 3 tables for each preset
- Alternative: Online calculation based on system properties. (3 parameters to play with: Jmax, duration, ratio acc/cst speed).

Optimised iterative Algorithm to be written in C and monitored by FPGA

Feedback implementation in VHDL

CÉRN

