

MAGNET (RE)TRAINING

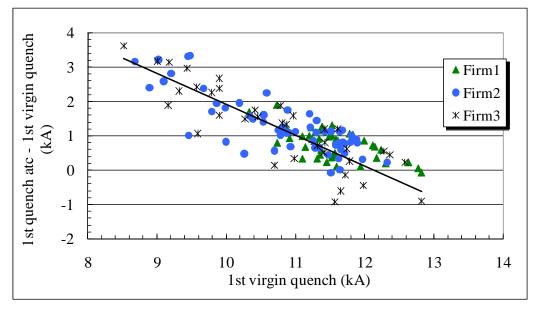
E. Todesco

Magnets, Superconductors and Cryostats Group Technology Department, CERN

Acknowledgements: B. Bellesia, N. Catalan-Lasheras, S. Feher, L. Rossi, A. Siemko, W. Venturini-Delsolaro, A. Verweij, the HC team, the SM18 team

RETRAINING: DIPOLES AT 6.5 TEV

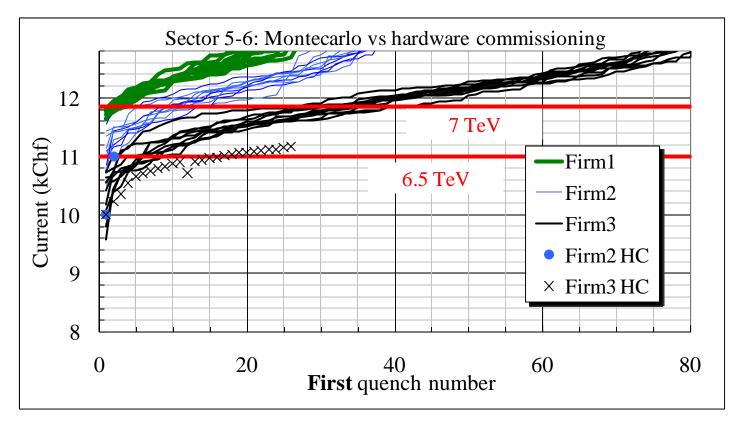
- Main dipoles and quads were not trained to 7 TeV
- All sectors reached 5 TeV without quench
- One sector (5-6) trained up to 6.6 TeV based on this experience
 - To go to 6.5 TeV:
 - About 10 quenches per sector, for a total of 80 quenches
 - No quenches from Firm1
 - A few quenches (10%) from Firm2
 - All the rest (90%) from Firm3 all in different magnets
 - This behaviour, observed in 5-6 during hardware commissioning, can be obtained by a model based on test data
 - Do we need training after each warm-up? We do not know



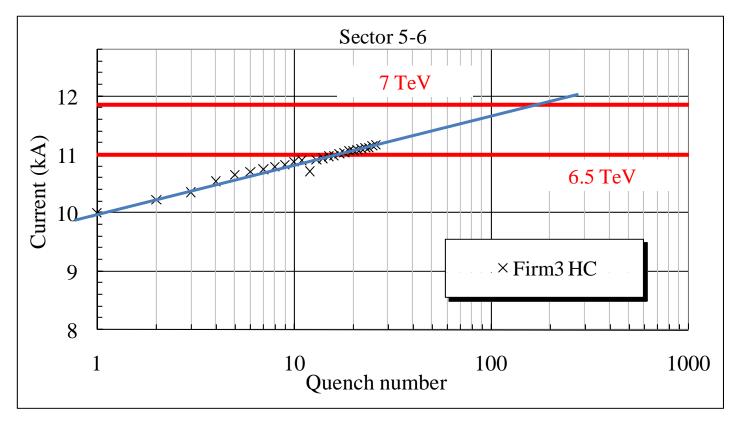
RETRAINING: A MODEL FOR DIPOLES

- Method: evaluate correlations between 1st virgin quench and 1st quench after thermal cycle
 - About 110 magnets available random part modeled as Gaussian
 - Each firm treated separately

• Use these correlations to extrapolate the values of the virgin quench, measured in all magnets, to the condition after


thermal cycle

RETRAINING: DIPOLES TO 7 TEV


- From the model: in each sector in average 5 quenches from Firm1, 13 from Firm2, 20 from Firm3 total of about 40 quenches per sector
 - This gives only the first quench in each magnet
 - The model is clearly too optimist after 6.5 TeV we do not know why

RETRAINING: DIPOLES TO 7 TEV

- Estimate based on empirical exponential fit of HC data: about 110±30 quenches per sector (A. Verweij, Chamonix)
 - This fit implies that Firm3 magnets will get much worse than in their virgin condition (2 quenches per magnet to go to nominal instead of 1)

RETRAINING: MAIN QUADRUPOLES

- All MQ circuits reached 9.31 kA (5.5 TeV) without quench
- Two sectors have been trained more:
 - Sector 4-5 reached 6.6 TeV with one quench
 - Sector 5-6 reached 6.9 TeV with one quench
 - If the training of these two sectors is significant, we should expect reaching 7 TeV in the whole machine with a few quenches per sector

RETRAINING: OTHER MAGNETS

- Going to 7 TeV, based on hardware commissioning 2008 experience, for the other magnets (mostly individually powered)
 - ~0 quenches in the MQX
 - ~15 quenches in the separation dipoles
 - ~12 quenches in the MQY,
 - ~35 quenches in the MQM,
 - Contrary to the dipole case, we have some magnets quenching more than one time (up to ~5 quenches)

CONCLUSIONS

- Main dipoles: total of 80 quenches to 6.5 TeV
 - 7 TeV not reached, estimates based on empirical fit gives 900±300 quenches (upper bound?)
 - Estimates for first quench based on a model give 320 that is clearly a lower bound
 - Up to 6.6 TeV quenches mostly from Firm3 magnets, and all in different magnets
 - According to the model, up to 7 TeV most quenches should still be in Firm3
- Main quads: should go to 7 TeV with 10-20 quenches
- Other magnets
 - ~15 quenches in the separation dipoles, ~12 quenches in the MQY,
 ~35 quenches in the MQM,
 - Some magnets quench more than one time (up to ~5 quenches)